Pamamycins are macrodiolides of polyketide origin with antibacterial activities. Their biosynthesis has been proposed to utilize succinate as a building block. However, the mechanism of succinate incorporation into a polyketide was unclear. Here, we report identification of a pamamycin biosynthesis gene cluster by aligning genomes of two pamamycin-producing strains. This unique cluster contains polyketide synthase (PKS) genes encoding seven discrete ketosynthase (KS) enzymes and one acyl-carrier protein (ACP)-encoding gene. A cosmid containing the entire set of genes required for pamamycin biosynthesis was successfully expressed in a heterologous host. Genetic and biochemical studies allowed complete delineation of pamamycin biosynthesis. The pathway proceeds through 3-oxoadipyl-CoA, a key intermediate in the primary metabolism of the degradation of aromatic compounds. 3-Oxoadipyl-CoA could be used as an extender unit in polyketide assembly to facilitate the incorporation of succinate.
Actinomycetes genome sequencing and bioinformatic analyses revealed a large number of "cryptic" gene clusters coding for secondary metabolism. These gene clusters have the potential to increase the chemical diversity of natural products. Indeed, reexamination of well-characterized actinomycetes strains revealed a variety of hidden treasures. Growing information about this metabolic diversity has promoted further development of strategies to discover novel biologically active compounds produced by actinomycetes. This new task for actinomycetes genetics requires the development and use of new approaches and tools. Application of synthetic biology approaches led to the development of a set of strategies and tools to satisfy these new requirements. In this review, we discuss strategies and methods to discover small molecules produced by these fascinating bacteria and also discuss a variety of genetic instruments and regulatory elements used to activate secondary metabolism cryptic genes for the overproduction of these metabolites.
Simocyclinone D8 (1, SD8) has attracted attention due to its highly complex hybrid structure and the unusual way it inhibits bacterial DNA gyrase by preventing DNA binding to the enzyme. Although a hypothesis explaining simocyclinone biosynthesis has been previously proposed, little was proven in vivo due to the genetic inaccessibility of the producer strain. Herein, we report discovery of three new D-type simocyclinones (D9, D10, and D11) produced by Kitasatospora sp. and Streptomyces sp. NRRL B-24484, as well as the identification and annotation of their biosynthetic gene clusters. Unexpectedly, the arrangement of the newly discovered biosynthetic gene clusters is starkly different from the previously published one, despite the nearly identical structures of D8 and D9 simocyclinones. The gene inactivation and expression studies have disproven the role of a modular polyketide synthase (PKS) system in the assembly of the linear dicarboxylic acid. Instead, the new stand-alone ketosynthase genes were shown to be involved in the biosynthesis of the tetraene chain. Additionally, we identified the gene responsible for the conversion of simocyclinone D9 (2, SD9) into D8.
A large majority of genome-encrypted chemical diversity in actinobacteria remains to be discovered, which is related to the low level of secondary metabolism genes expression. Here, we report the application of a reporter-guided screening strategy to activate cryptic polycyclic tetramate macrolactam gene clusters in Streptomyces albus J1074. The analysis of the S. albus transcriptome revealed an overall low level of secondary metabolism genes transcription. Combined with transposon mutagenesis, reporter-guided screening resulted in the selection of two S. albus strains with altered secondary metabolites production. Transposon insertion in the most prominent strain, S. albus ATGSal2P2::TN14, was mapped to the XNR_3174 gene encoding an unclassified transcriptional regulator. The mutant strain was found to produce the avenolide-like compound butenolide 4. The deletion of the gene encoding a putative acyl-CoA oxidase, an orthologue of the Streptomyces avermitilis avenolide biosynthesis enzyme, in the S. albus XNR_3174 mutant caused silencing of secondary metabolism. The homologues of XNR_3174 and the butenolide biosynthesis genes were found in the genomes of multiple Streptomyces species. This result leads us to believe that the discovered regulatory elements comprise a new condition-dependent system that controls secondary metabolism in actinobacteria and can be manipulated to activate cryptic biosynthetic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.