BackgroundBorrelia burgdorferi sensu lato (sl), the causative agent of Lyme borreliosis, is transmitted by ticks of the genus Ixodes as vector. For identification of Borrelia infections in ticks a TaqMan™ minor groove binder (MGB) probe-based quantitative real time PCR (qPCR) was established targeting the 5S-23S intergenic spacer. Extension to a duplex qPCR included an Ixodes spp. positive control to verify successful DNA isolation. Besides qPCR, an ospA-specific conventional PCR for species-specific identification of B. spielmanii was established. Afterwards 1000 I. ricinus flagged in the city of Hanover, Germany, were investigated for B. burgdorferi sl infections followed by species identification. Furthermore, I. hexagonus ticks were investigated to proof applicability of the PCRs.ResultsQuantitative real time PCR (qPCR) identifying B. burgdorferi sl in ticks was able to detect 1-10 copies per reaction. B. spielmanii ospA-specific conventional PCR was also highly specific and showed no cross reactions with the other tested Borrelia species. From 1000 hanoveranian ticks 24.3% were positive compared to only 7.4% positives by dark-field microscopy. Related to tick stage 1.7% larvae, 18.1% nymphs, and 34.6% adults were positive. The most frequent species was B. garinii, followed by B. afzelii, B. spielmanii, B. valaisiana and B. burgdorferi sensu stricto (ss). 70.6% of I. ricinus were mono-infected, whereas 28.0% and 1.4% were infected with two and three Borrelia species, respectively. From 232 I. hexagonus collected from hedgehogs in different sites of Germany, qPCR detected 5.7% to be infected with B. burgdorferi sl, which were identified as B. afzelii, B. garinii and B. spielmanii.ConclusionsThe evaluated qPCR to detect B. burgdorferi sl in Ixodes spp. is highly specific and sensitive. As a duplex qPCR including detection of Ixodes spp. DNA it is the first DNA based technique incorporating a control for successful DNA isolation from the vector tick. Establishment of a B. spielmanii specific conventional PCR filled the gap in PCR identification of principal European Borrelia genospecies. Practical application showed that all European pathogenic Borrelia spp. were present in I. ricinus flagged in recreational areas of the city of Hanover and confirmed I. hexagonus as reservoir for pathogenic Borrelia spp.
BackgroundMaintenance of metal homeostasis is crucial in bacterial pathogenicity as metal starvation is the most important mechanism in the nutritional immunity strategy of host cells. Thus, pathogenic bacteria have evolved sensitive metal scavenging systems to overcome this particular host defence mechanism. The ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) displays a unique gut tropism and causes a chronic progressive intestinal inflammation. MAP possesses eight conserved lineage specific large sequence polymorphisms (LSP), which distinguish MAP from its ancestral M. avium ssp. hominissuis or other M. avium subspecies. LSP14 and LSP15 harbour many genes proposed to be involved in metal homeostasis and have been suggested to substitute for a MAP specific, impaired mycobactin synthesis.ResultsIn the present study, we found that a LSP14 located putative IrtAB-like iron transporter encoded by mptABC was induced by zinc but not by iron starvation. Heterologous reporter gene assays with the lacZ gene under control of the mptABC promoter in M. smegmatis (MSMEG) and in a MSMEG∆furB deletion mutant revealed a zinc dependent, metalloregulator FurB mediated expression of mptABC via a conserved mycobacterial FurB recognition site. Deep sequencing of RNA from MAP cultures treated with the zinc chelator TPEN revealed that 70 genes responded to zinc limitation. Remarkably, 45 of these genes were located on a large genomic island of approximately 90 kb which harboured LSP14 and LSP15. Thirty-five of these genes were predicted to be controlled by FurB, due to the presence of putative binding sites. This clustering of zinc responsive genes was exclusively found in MAP and not in other mycobacteria.ConclusionsOur data revealed a particular genomic signature for MAP given by a unique zinc specific locus, thereby suggesting an exceptional relevance of zinc for the metabolism of MAP. MAP seems to be well adapted to maintain zinc homeostasis which might contribute to the peculiarity of MAP pathogenicity.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1076) contains supplementary material, which is available to authorized users.
The ferric uptake regulator A (FurA) is known to be involved in iron homeostasis and stress response in many bacteria. In mycobacteria the precise role of FurA is still unclear. In the presented study, we addressed the functional role of FurA in the ruminant pathogen Mycobacterium avium ssp. paratuberculosis (MAP) by construction of a furA deletion strain (MAPΔfurA). RNA deep sequencing revealed that the FurA regulon consists of repressed and activated genes associated to stress response or intracellular survival. Not a single gene related to metal homeostasis was affected by furA deletion. A decisive role of FurA during intracellular survival in macrophages was shown by significantly enhanced survival of MAPΔfurA compared to the wildtype, indicating that a principal task of mycobacterial FurA is oxidative stress response regulation in macrophages. This resistance was not associated with altered survival of mice after long term infection with MAP. Our results demonstrate for the first time, that mycobacterial FurA is not involved in the regulation of iron homeostasis. However, they provide strong evidence that FurA contributes to intracellular survival as an oxidative stress sensing regulator.
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease, a chronic granulomatous enteritis in ruminants. Furthermore, infections of humans with MAP have been reported and a possible association with Crohn's disease and diabetes type I is currently discussed. MAP owns large sequence polymorphisms (LSPs) that were exclusively found in this mycobacteria species. The relevance of these LSPs in the pathobiology of MAP is still unclear. The mptD gene (MAP3733c) of MAP belongs to a small group of functionally uncharacterized genes, which are not present in any other sequenced mycobacteria species. mptD is part of a predicted operon (mptABCDEF), encoding a putative ATP binding cassette-transporter, located on the MAP-specific LSP14. In the present study, we generated an mptD knockout strain (MAPΔmptD) by specialized transduction. In order to investigate the potential role of mptD in the host, we performed infection experiments with macrophages. By this, we observed a significantly reduced cell number of MAPΔmptD early after infection, indicating that the mutant was hampered with respect to adaptation to the early macrophage environment. This important role of mptD was supported in mouse infection experiments where MAPΔmptD was significantly attenuated after peritoneal challenge. Metabolic profiling was performed to determine the cause for the reduced virulence and identified profound metabolic disorders especially in the lipid metabolism of MAPΔmptD. Overall our data revealed the mptD gene to be an important factor for the metabolic adaptation of MAP required for persistence in the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.