Molecular-dynamics simulations with metadynamics enhanced sampling reveal three distinct binding sites for arginine vasopressin (AVP) within its V2 -receptor (V2 R). Two of these, the vestibule and intermediate sites, block (antagonize) the receptor, and the third is the orthosteric activation (agonist) site. The contacts found for the orthosteric site satisfy all the requirements deduced from mutagenesis experiments. Metadynamics simulations for V2 R and its V1a R-analog give an excellent correlation with experimental binding free energies by assuming that the most stable binding site in the simulations corresponds to the experimental binding free energy in each case. The resulting three-site mechanism separates agonists from antagonists and explains subtype selectivity.
Arginine-vasopressin was subjected to a long (11 μs) molecular dynamics simulation in aqueous solution. Analysis of the results by DASH and principal components analyses revealed four main ring conformations that move essentially independently of the faster-moving tail region. Two of these conformations (labeled "saddle") feature well-defined β-turns in the ring and conserved transannular hydrogen bonds, whereas the other two ("open") feature neither. The conformations have been identified and defined and are all of sufficient stability to be considered candidates for biological conformations in their cognate receptors.
Arginine vasopressin (AVP) has been suggested by molecular-dynamics (MD) simulations to exist as a mixture of conformations in solution. The (1)H and (13)C NMR chemical shifts of AVP in solution have been calculated for this conformational ensemble of ring conformations (identified from a 23 μs molecular-dynamics simulation). The relative free energies of these conformations were calculated using classical metadynamics simulations in explicit water. Chemical shifts for representative conformations were calculated using density-functional theory. Comparison with experiment and analysis of the results suggests that the (1)H chemical shifts are most useful for assigning equilibrium concentrations of the conformations in this case. (13)C chemical shifts distinguish less clearly between conformations, and the distances calculated from the nuclear Overhauser effect do not allow the conformations to be assigned clearly. The (1)H chemical shifts can be reproduced with a standard error of less than 0.24 ppm (<2.2 ppm for (13)C). The combined experimental and theoretical results suggest that AVP exists in an equilibrium of approximately 70% saddlelike and 30% clinched open conformations. Both newly introduced statistical metrics designed to judge the significance of the results and Smith and Goodman's DP4 probabilities are presented.
Molecular-dynamics simulations with metadynamics enhanced sampling reveal three distinct binding sites for arginine vasopressin (AVP) within its V2-receptor (V2R). Two of these, the vestibule and intermediate sites, block (antagonize) the receptor and the third is the orthosteric activation (agonist) site. The contacts found for the orthosteric site satisfy all the requirements deduced from mutagenesis experiments. Metadynamics simulations for V2R and its V1aR-analog give an excellent correlation with experimental binding free energies by assuming that the most stable binding site in the simulations corresponds to the experimental binding free energy in each case. The resulting three-site mechanism separates agonists from antagonists and explains subtype selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.