Oxidative stress induced by light activation of photosensitizers is regarded to have a role in triggering cell death pathways during photodynamic therapy (PDT). Reactive oxygen species have been proposed to act as signal transduction molecules activating downstream reactions that lead to apoptosis. Mainly debated is the cooperating role of other signaling systems like calcium or pH. The present work contributes to this discussion by studying PDT effects in cell cultures of rat bladder epithelial cells for the hydrophilic tetrasulfonated aluminum phthalocyanine (AlPcS4). Cells were coincubated with the photosensitizer and the calcium‐sensitive probe Fluo‐3. The light‐induced reactions were analyzed with a confocal laser scanning microscope. The dynamics of the process during light activation was observed with subcellular resolution. A transient calcium elevation during the irradiation process was detected, especially in the cell's nuclei, followed by a more sustained increase. The evaluation of the energy‐dose–dependent phototoxicity after an incubation time with the photosensitizer of 1 and 24 h, showed enhanced phototoxicity when the drug was present for 24 h. Surprisingly, stimulation of cell proliferation was observed at very low light doses (at 0.2 J/cm2) when the drug was incubated for 24 h (cell viability 160%). Induction of apoptosis could be observed after irradiation with fluences between 1 and 3 J/cm2. Apoptotic cells were identified with fluorescein isothiocyanate–labeled Annexin V, which binds to phosphatidylserine after its translocation to the outer plasma membrane. In the presence of the antioxidant pyrrolidinedithiocarbamate the transient calcium elevation was totally inhibited, as was the subsequent translocation of PS. In contrast, N‐acetyl‐l‐cysteine did not suppress the transient calcium increase. Our data might be consistent with calcium regulated processes during AlPcS4‐PDT and the involvement of oxygen radicals.
Oxidative stress induced by light activation of photosensitizers is regarded to have a role in triggering cell death pathways during photodynamic therapy (PDT). Reactive oxygen species have been proposed to act as signal transduction molecules activating downstream reactions that lead to apoptosis. Mainly debated is the cooperating role of other signaling systems like calcium or pH. The present work contributes to this discussion by studying PDT effects in cell cultures of rat bladder epithelial cells for the hydrophilic tetrasulfonated aluminum phthalocyanine (AlPcS4). Cells were coincubated with the photosensitizer and the calcium-sensitive probe Fluo-3. The light-induced reactions were analyzed with a confocal laser scanning microscope. The dynamics of the process during light activation was observed with subcellular resolution. A transient calcium elevation during the irradiation process was detected, especially in the cell's nuclei, followed by a more sustained increase. The evaluation of the energy-dose-dependent phototoxicity after an incubation time with the photosensitizer of 1 and 24 h, showed enhanced phototoxicity when the drug was present for 24 h. Surprisingly, stimulation of cell proliferation was observed at very low light doses (at 0.2 J/cm2) when the drug was incubated for 24 h (cell viability 160%). Induction of apoptosis could be observed after irradiation with fluences between 1 and 3 J/cm2. Apoptotic cells were identified with fluorescein isothiocyanate-labeled Annexin V, which binds to phosphatidylserine after its translocation to the outer plasma membrane. In the presence of the antioxidant pyrrolidinedithiocarbamate the transient calcium elevation was totally inhibited, as was the subsequent translocation of PS. In contrast, N-acetyl-L-cysteine did not suppress the transient calcium increase. Our data might be consistent with calcium regulated processes during AlPcS4-PDT and the involvement of oxygen radicals.
The present study was undertaken to find new ways to improve efficacy of photodynamic therapy (PDT). We investigated the combinatory effect of the photosensitizer Photofrin and ursodeoxycholic acid (UDCA). UDCA is a relatively non-toxic bile acid which is used inter alia as a treatment for cholestatic disorders and was reported to enhance PDT efficiency of two other photosensitizers. Since besides necrosis and autophagic processes apoptosis has been found to be a prominent form of cell death in response to PDT for many cells in culture, several appropriate tests, such as cytochrome c release, caspase activation and DNA fragmentation were performed. Furthermore spectral resolved fluorescence lifetime imaging (SLIM) was used to analyse the cellular composition of Photofrin and the status of the enzymes of the respiratory chain. Our experiments with two human hepatoblastoma cell lines revealed that the combination of Photofrin with UDCA significantly enhanced efficacy of PDT for both cell lines even though the underlying molecular mechanism for the mode of action of Photofrin seems to be different to some extent. In HepG2 cells cell death was clearly the consequence of mitochondrial disturbance as shown by cytochrome c release and DNA fragmentation, whereas in Huh7 cells these features were not observed. Other mechanisms seem to be more important in this case. One reason for the enhanced PDT effect when UDCA is also applied could be that UDCA destabilizes the mitochondrial membrane. This could be concluded from the fluorescence lifetime of the respiratory chain enzymes which turned out to be longer in the presence of UDCA in HepG2 cells, suggesting a perturbation of the mitochondrial membrane. The threshold at which PDT damages the mitochondrial membrane was therefore lower and correlated with the enhanced cytochrome c release observed post PDT. Thus enforced photodamage leads to a higher loss of cell viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.