Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinson's disease (PD), but the underlying pathophysiological mechanisms and the normal function of this large multidomain protein remain speculative. To address the role of this protein in vivo, we generated three different LRRK2 mutant mouse lines. Mice completely lacking the LRRK2 protein (knock-out, KO) showed an early-onset (age 6 weeks) marked increase in number and size of secondary lysosomes in kidney proximal tubule cells and lamellar bodies in lung type II cells. Mice expressing a LRRK2 kinase-dead (KD) mutant from the endogenous locus displayed similar early-onset pathophysiological changes in kidney but not lung. KD mutants had dramatically reduced full-length LRRK2 protein levels in the kidney and this genetic effect was mimicked pharmacologically in wild-type mice treated with a LRRK2-selective kinase inhibitor. Knock-in (KI) mice expressing the G2019S PD-associated mutation that increases LRRK2 kinase activity showed none of the LRRK2 protein level and histopathological changes observed in KD and KO mice. The autophagy marker LC3 remained unchanged but kidney mTOR and TCS2 protein levels decreased in KD and increased in KO and KI mice. Unexpectedly, KO and KI mice suffered from diastolic hypertension opposed to normal blood pressure in KD mice. Our findings demonstrate a role for LRRK2 in kidney and lung physiology and further show that LRRK2 kinase function affects LRRK2 protein steady-state levels thereby altering putative scaffold/GTPase activity. These novel aspects of peripheral LRRK2 biology critically impact ongoing attempts to develop LRRK2 selective kinase inhibitors as therapeutics for PD.
Abstract-The aim of this study was to explore the effects of the renin inhibitor aliskiren in streptozotocin-diabetic TG(mRen-2)27 rats. Furthermore, we investigated in vitro the effect of aliskiren on the interactions between renin and the (pro)renin receptor and between aliskiren and prorenin. Aliskiren distributed extensively to the kidneys of normotensive (non)diabetic rats, localizing in the glomeruli and vessel walls after 2 hours exposure. In diabetic TG(mRen-2)27 rats, aliskiren (10 or 30 mg/kg per day, 10 weeks) lowered blood pressure, prevented albuminuria, and suppressed renal transforming growth factor- and collagen I expression versus vehicle. Aliskiren reduced (pro)renin receptor expression in glomeruli, tubules, and cortical vessels compared to vehicle (in situ hybridization). In human mesangial cells, aliskiren (0.1 mol/L to 10 mol/L) did not inhibit binding of 125 I-renin to the (pro)renin receptor, nor did it alter the activation of extracellular signal-regulated kinase 1/2 by renin (20 nmol/L) preincubated with aliskiren (100 nmol/L) or affect gene expression of the (pro)renin receptor. Evidence was obtained that aliskiren binds to the active site of prorenin. The above results demonstrate the antihypertensive and renoprotective effects of aliskiren in experimental diabetic nephropathy. The evidence that aliskiren can reduce in vivo gene expression for the (pro)renin receptor and that it may block prorenin-induced angiotensin generation supports the need for additional work to reveal the mechanism of the observed renoprotection by this renin inhibitor. Key Words: aliskiren Ⅲ renin inhibitor Ⅲ TG(mRen-2)rat Ⅲ diabetic nephropathy Ⅲ (pro)renin receptor A central role for the renin-angiotensin-aldosterone system (RAAS) in the pathogenesis of diabetic nephropathy (DN) is widely accepted, based largely on the attenuation of DN by angiotensin (Ang) converting enzyme inhibitors (ACEi) 1 and Ang II receptor blockers (ARB). 2 However, these agents do not halt renal decline, possibly because of insufficient suppression of the intrarenal RAAS. Theoretically, agents that more effectively suppress the RAAS should confer improved tissue protection over current treatments for DN. Renin inhibitors, by acting at the point of activation of the RAAS cascade, may represent such agents. Aliskiren is a potent inhibitor of human renin; it lowers blood pressure (BP) in patients with mild-moderate hypertension 3,4 and shows cardiorenal protection in hypertensive double transgenic rats expressing human genes for renin and angiotensinogen. 5
gamma-Aminobutyric acidA (GABAA) receptors in the mammalian central nervous system (CNS) are members of a family of ligand-gated ion channels consisting of heterooligomeric glycoprotein complexes in synaptic and extrasynaptic membranes. Although molecular cloning studies have identified 5 subunits (with approximately 40% amino acid homology) and isoforms thereof (approximately 70% homology), namely alpha 1-6, beta 1-4, gamma 1-3, delta, and rho, the subunit composition and stoichiometry of native receptors are not known. The regional distribution and cellular expression of GABAA receptor messenger RNAs (mRNAs) in the rat CNS have now been investigated by in situ hybridization histochemistry with subunit-specific 35S-labelled oligonucleotide probes on adjacent cryostat sections. Whereas alpha 1, beta 2, and gamma 2 transcripts were the most abundant and ubiquitous in the rat brain--correlating with the radioautographic distribution of GABAA receptors revealed by an ionophore ligand--others had a more restricted expression while often being abundant. For example, alpha 2 transcripts were found only in the olfactory bulb, cerebral cortex, caudate putamen, hippocampal formation, and certain lower brain stem nuclei; alpha 3 only in the olfactory bulb and cerebral cortex; alpha 5 in the hippocampal formation; and alpha 6 only in cerebellar granule cells. In addition, beta 1, beta 3, gamma 1, and delta mRNAs were also uniquely expressed in restricted brain regions. Moreover, in the spinal cord, alpha 1-3, beta 2,3, and gamma 2 mRNAs were differently expressed in Rexed layers 2-9, with alpha 2, beta 3, and gamma 2 transcripts most prominent in motoneurons of layer 9. Although differential protein trafficking could lead to the incorporation of some subunits into somatic membranes and others into dendritic membranes, some tentative conclusions as to the probable composition of native proteins in various regions of the CNS may be drawn.(ABSTRACT TRUNCATED AT 400 WORDS)
FTY720[2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol hydrochloride] is an oral sphingosine-1-phosphate receptor modulator under development for the treatment of multiple sclerosis (MS). The drug is phosphorylated in vivo by sphingosine kinase 2 to its bioactive form, FTY720-P. Although treatment with FTY720 is accompanied by a reduction of the peripheral lymphocyte count, its efficacy in MS and experimental autoimmune encephalomyelitis (EAE) may be due to additional, direct effects in the central nervous system (CNS). We now show that FTY720 localizes to the CNS white matter, preferentially along myelin sheaths. Brain trough levels of FTY720 and FTY720-P in rat EAE are of the same magnitude and dose dependently increase; they are in the range of 40 to 540 ng/g in the brain tissue at efficacious doses and exceed blood concentrations severalfold. In a rat model of chronic EAE, prolonged treatment with 0.03 mg/kg was efficacious, but limiting the dosing period failed to prevent EAE despite a significant decrease in blood lymphocytes. FTY720 effectiveness is likely due to a culmination of mechanisms involving reduction of autoreactive T cells, neuroprotective influence of FTY720-P in the CNS, and inhibition of inflammatory mediators in the brain.FTY720 is an oral sphingosine-1-phosphate (S1P) receptor modulator (Baumruker et al., 2007) under development for the treatment of multiple sclerosis (MS), representing the first of a new class of immunomodulatory agents. Promising results in phase II trials with relapsing MS patients mirror the striking efficacy of FTY720 in MS models of experimental autoimmune encephalomyelitis (EAE), shown by preventive and therapeutic treatment (Brinkmann et al., 2002;Fujino et al., 2003;Webb et al., 2004;Kataoka et al., 2005;Balatoni et al., 2007). FTY720 is converted in vivo to its biologically active phosphate ester metabolite (FTY720-P), which acts as a high-affinity agonist for four of the five known G-protein-coupled S1P receptors, namely S1P 1 and S1P 3-5 (Brinkmann et al., 2002;Mandala et al., 2002). Sphingosine kinase (SPHK) 2 is the primary enzyme required for FTY720-P formation, as we and others subsequently confirmed in SPHK2 knockout mice (Kharel et al., 2005;Zemann et al., 2006). The fact that SPHK1 null mice become lymphopenic after FTY720 administration further supports the view that SPHK2 is sufficient for the functional activation of FTY720 (Allende et al., 2004).Emerging evidence suggests that the effectiveness of FTY720 in the central nervous system (CNS) extends beyond immunomodulation to encompass other aspects of MS pathophysiology, including an influence on the blood-brain barrier and glial repair mechanisms that could ultimately contribute to restoration of nerve function (Baumruker et al., 2007; This work was supported by Novartis Pharma AG. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.