While central nervous system (CNS) microglia have been studied extensively, surprisingly little is known about macrophages populating the peripheral nervous system (PNS Macs).We performed ontogenic, transcriptomic and spatial characterization of sciatic nerve Macs (snMacs). Using multiple fate-mapping systems, we show that snMacs do not derive from the early embryonic precursors colonizing the CNS, but originate primarily from late embryonic precursors and get replaced by bone marrow-derived Macs over time. Using single-cell profiling, we identified a tissue-specific core signature of snMacs and found two spatially-separated snMacs: Relmα + Mgl1 + snMacs in the epineurium and Relmα -Mgl1-snMacs in the endoneurium. Globally, snMacs lack most core signature genes of microglia, with only the endoneurial subset expressing a restricted number of these genes. Single-cell transcriptomics revealed that in response to injury both snMacs respond differently and that the PNS, in contrast to the CNS, is permissive to prolonged engraftment of monocytederived Macs recruited upon injury.
Toll-like receptors comprise a family of evolutionary conserved pattern recognition receptors that act as a first defense line in the innate immune system. Upon stimulation with microbial ligands, they orchestrate the induction of a host defense response by activating different signaling cascades. Interestingly, they appear to detect the presence of endogenous signals of danger as well and as such, neurodegeneration is thought to trigger an immune response through ligation of TLRs. Though recent data report the expression of various TLRs in the central nervous system, TLR expression patterns in the peripheral nervous system have not been determined yet. We observed that Schwann cells express relatively high levels of TLRs, with especially TLR3 and TLR4 being prominent. Sensory and motor neurons hardly express TLRs at all. Through the use of NF-κB signaling as read-out, we could show that all TLRs are functional in Schwann cells and that bacterial lipoprotein, a ligand for TLR1/TLR2 receptors yields the strongest response. In sciatic nerve, basal levels of TLRs closely reflect the expression patterns as determined in Schwann cells. TLR3, TLR4, and TLR7 are majorly expressed, pointing to their possible role in immune surveillance. Upon axotomy, TLR1 becomes strongly induced, while most other TLR expression levels remain unaffected. Altogether, our data suggest that similar to microglia in the brain, Schwann cells might act as sentinel cells in the PNS. Furthermore, acute neurodegeneration induces a shift in TLR expression pattern, most likely illustrating specialized functions of TLRs in basal versus activated conditions of the peripheral nerve.
The most common form of spinal muscular atrophy (SMA) is a recessive disorder caused by deleterious SMN1 mutations in 5q13, whereas the genetic etiologies of non-5q SMA are very heterogeneous and largely remain to be elucidated. In a Bulgarian family affected by autosomal-dominant proximal SMA, we performed genome-wide linkage analysis and whole-exome sequencing and found a heterozygous de novo c.320C>T (p.Ser107Leu) mutation in bicaudal D homolog 2 (Drosophila) (BICD2). Further analysis of BICD2 in a cohort of 119 individuals with non-5q SMA identified a second de novo BICD2 mutation, c.2321A>G (p.Glu774Gly), in a simplex case. Detailed clinical and electrophysiological investigations revealed that both families are affected by a very similar disease course, characterized by early childhood onset, predominant involvement of lower extremities, and very slow disease progression. The amino acid substitutions are located in two interaction domains of BICD2, an adaptor protein linking the dynein molecular motor with its cargo. Our immunoprecipitation and localization experiments in HeLa and SH-SY5Y cells and affected individuals' lymphoblasts demonstrated that p.Ser107Leu causes increased dynein binding and thus leads to accumulation of BICD2 at the microtubule-organizing complex and Golgi fragmentation. In addition, the altered protein had a reduced colocalization with RAB6A, a regulator of vesicle trafficking between the Golgi and the endoplasmic reticulum. The interaction between p.Glu744Gly altered BICD2 and RAB6A was impaired, which also led to their reduced colocalization. Our study identifies BICD2 mutations as a cause of non-5q linked SMA and highlights the importance of dynein-mediated motility in motor neuron function in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.