Fish and algae are the major sources of n-3 polyunsaturated fatty acids (n-3 PUFAs). Globally, there is a rapid increase in demand for n-3 PUFA-rich oils. Conventional oil production processes use high temperature and chemicals, compromising the oil quality and the environment. Hence, alternative green technologies have been investigated for producing oils from aquatic sources. While most of the studies have focused on the oil extraction and enrichment of n-3 PUFAs, less effort has been directed toward green refining of oils from fish and algae. Enzymatic processing and ultrasound-assisted extraction with environment-friendly solvents are the most promising green technologies for extracting fish oil, whereas pressurized extractions are suitable for extracting microalgae oil. Lipase-catalysed ethanolysis of fish and algae oil is a promising green technology for enriching n-3 PUFAs. Green refining technologies such as phospholipase-and membraneassisted degumming deserve investigation for application in fish and algal oils. In the current review, we critically examined the currently existing research on technologies applied at each of the steps involved in the production of oils rich in n-3 PUFAs from fish and algae species. Special attention was placed on assessment of green technologies in comparison with conventional processing methods.
Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.
To stop overfishing and meet the protein needs of a growing population, more information is needed on how to use marine by-catches, by-products, and undervalued fish species for human consumption. Turning them into protein powder is a sustainable and marketable way to add value. However, more knowledge of the chemical and sensory properties of commercial fish proteins is needed to identify the challenges in developing fish derivatives. This study aimed to characterize the sensory and chemical properties of commercial fish proteins to compare their suitability for human consumption. Proximate composition, protein, polypeptide and lipid profiles, lipid oxidation, and functional properties were analyzed. The sensory profile was compiled using generic descriptive analysis, and odor-active compounds were identified with gas-chromatography–mass spectrometry-olfactometry (GC-MS/O). Results indicated significant differences in chemical and sensory properties between processing methods but not between fish species. However, the raw material had some influence in the proteins’ proximate composition. Bitterness and fishiness were the main perceived off-flavors. All samples, apart from hydrolyzed collagen, had intense flavor and odor. Differences in odor-active compounds supported the sensory evaluation results. The chemical properties revealed that the lipid oxidation, peptide profile, and raw material degradation are likely affecting the sensory properties of commercial fish proteins. Limiting lipid oxidation during processing is crucial for the development of mild-tasting and -smelling products for human consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.