Seed science is a vital field of research that contributes to many areas of knowledge in fundamental ecology and evolution, as well as in applied areas of food production, and the conservation and restoration of native plants. A large amount of novel information, technologies and processes in seed science research are being produced and developed by early to middle career researchers (EMCRs) in academic, government and private science sectors. This breadth and novelty of research by EMCRs was evident at the second Australasian Seed Science Conference held online in September 2021. EMCRs represented almost one-third of the presenting delegates at the conference and covered research in areas including functional seed trait relationships, responses of seed traits and germination to environmental change, managing seeds in ex-situ seed and germplasm collections and using seeds as food sources. As future environmental, social and economic challenges arise, EMCR seed scientists will be at the forefront of emerging fundamental ecological and evolutionary seed science knowledge, as well as the development of technologies and processes for the conservation of native species, the utilisation of seeds in agriculture and food production, and many new ideas yet to be discovered.
Background When fire intervals are shorter than the time required for plants to reproduce, plant populations are threatened by “immaturity risk.” Therefore, understanding how the time between fires influences plants can inform ecosystem management. Quantifying periods of immaturity risk requires investigating the influence of fire intervals across plant life stages, but most studies are indiscriminate of maturity. As fire regimes are multidimensional, it is also important to consider other characteristics of fires such as severity. We conducted a field study in heathy woodland that investigated how fire severity and fire interval influence immaturity risk to serotinous resprouter species, by examining if fire severity interacts with the time since the fire to influence the occurrence of mature individuals and relative abundance of three species: silver banksia (Banksia marginata Cav.), prickly teatree (Leptospermum continentale Joy Thomps), and heath teatree (Leptospermum myrsinoides Schitdl). Results Regression modeling revealed a strong, positive influence of time since the last fire on the proportion of quadrats at a site with mature plants, for all three species. We only detected a small and uncertain influence of fire severity on the proportion of quadrats with mature heath and prickly teatree, and did not observe an effect of fire severity on the maturity of silver banksia. Interestingly, no relationships were observed between time since fire and the relative abundance of plants. That is, only when plant life stages were considered did we detect an effect of fire on plants. Populations of the three species were mostly immature in the first 7 years post-fire, suggesting if sites were uniformly burnt in this time frame, there could be increased risk of local extinctions. Conclusions Our study highlights the importance of examining population processes, such as reproduction, in addition to plant relative abundance. Surprisingly, we did not detect strong differences in plant maturation across fire severity classes; low occurrence of mature plants in recently burnt areas indicated that immaturity risk was high, regardless of fire severity. Ecological studies that distinguish between plant life stages will help to predict the impacts of fire on populations and enhance decision-making. We recommend fire intervals of ≥ 8 years to protect serotinous resprouter plants in heathy woodland vegetation of southern Australia.
Insights on tree species and competition effects on seasonal stem growth is critical to understanding the impacts of changing climates on tree productivity, particularly for eucalypts species that occur in narrow climatic niches and have unreliable tree rings. To improve our understanding of climate effects on forest productivity, we examined the relative importance of species, competition and climate to the seasonal stem growth of co-occurring temperate eucalypts on the tree productivity of temperate eucalypts. We measured monthly stem growth of three eucalypts (Eucalyptus obliqua, E. radiata, and E. rubida) over four years in a natural mixed-species forest in south-eastern Australia, examining the relative influences of species, competition index (CI) and climate variables on the seasonal basal area increment (BAI). Seasonal BAI varied with species and CI, and was greatest in spring and/or autumn, and lowest in summer. Our study highlights the interactive effects of species and competition on the seasonal stem growth of temperate eucalypts, clearly indicating that competitive effects are strongest when conditions are favourable to growth (spring and autumn), and least pronounced in summer, when reduced BAI was associated with less rainfall. Thus, our study indicates that management to reduce inter-tree competition would have minimal influence on stem growth during less favourable (i.e., drier) periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.