Background: Because ixodid ticks are vectors of zoonotic pathogens, including Borrelia, information of their abundance, seasonal variation in questing behaviour and pathogen prevalence is important for human health. As ticks are invading new areas northwards, information from these new areas are needed. Taiga tick (Ixodes persulcatus) populations have been recently found at Bothnian Bay, Finland. We assessed seasonal variation in questing abundance of ticks and their pathogen prevalence in coastal deciduous forests near the city of Oulu (latitudes 64-65°) in 2019. Methods: We sampled ticks from May until September by cloth dragging 100 meters once a month at eight study sites. We calculated a density index (individuals/100 m 2) to assess seasonal variation. Samples were screened for Borrelia burgdorferi (sensu lato) (including B. afzelii, B. garinii, B. burgdorferi (sensu stricto) and B. valaisana), Borrelia miyamotoi, Anaplasma phagocytophilum, Rickettsia spp., Neoehrlichia mikurensis, Francisella tularensis and Bartonella spp., Babesia spp. and for the tick-borne encephalitis virus. Results: All except one nymph were identified as I. persulcatus. The number of questing adults showed a strong peak in May (median: 6.5 adults/100 m 2), which is among the highest values reported in northern Europe, and potentially indicates a large population size. After May, the number of questing adults declined steadily with few adults still sampled in August. Nymphs were present from May until September. We found a striking prevalence of Borrelia spp. in adults (62%) and nymphs (40%), with B. garinii (51%) and B. afzelii (63%) being the most common species. In addition, we found that 26% of infected adults were coinfected with at least two Borrelia genospecies, mainly B. garinii and B. afzelii, which are associated with different host species. Conclusions: The coastal forest environments at Bothnian Bay seem to provide favourable environments for I. persulcatus and the spread of Borrelia. High tick abundance, a low diversity of the host community and similar host use among larvae and nymphs likely explain the high Borrelia prevalence and coinfection rate. Research on the infestation of the hosts that quantifies the temporal dynamics of immature life stages would reveal important aspects of pathogen circulation in these tick populations.
Hard ticks (Acari: Ixodidae) act as important vectors of zoonotic pathogens. For instance, Borrelia burgdorferi s.l. spirochetes pose a severe health risk as aetiological agents of Lyme borreliosis. Commonly, to study the abundance of questing (host-seeking) ticks, a 1 m2 piece of cloth is dragged over vegetation for a determined distance. Here, we designed a tick-sampling study to estimate the sampling efficiency of this standard method. We established 10 m dragging transects in a hemiboreal mixed forest patch in SW Finland for a 5-day monitoring period. Five of the transects were cloth-dragged 3× a day, whereas another five transects were dragged 6× a day in a manner that after each morning, midday and afternoon dragging, a second dragging was conducted on the same transect immediately. Captured Ixodes ricinus ticks were subsequently analysed for tick-borne pathogens. The initial population size of nymphal ticks on a transect was approximated by the accumulated nymph catch from the dragging sessions. The sampling efficiency of the cloth dragging was low, as a single dragging in a previously untouched vegetation strip always caught less than 12% (mean 6%) of the estimated population of active nymphs that were assumed to be questing during the study. Clear results were not found for daily activity rhythm, as ticks were caught in all daily dragging sessions. Approximately every third nymph and every second adult carried a pathogen, but nothing indicated that the occurrence of a pathogen affected the likelihood of the tick being caught by cloth dragging. Our results suggest that only a minority of active ticks can be caught by a single cloth dragging. The abundance estimates in many tick investigations might thus be downward biased.
Ixodiphagus hookeri (Hymenoptera: Encyrtidae) is a parasitoid wasp specialized in parasitizing the larvae and nymphs of ticks (Acari: Ixodidae). As parasitized ticks die prior to reproduction, I. hookeri is seen as a prime biological control agent candidate. Despite this, little is known of their occurrence or ecology in northern Europe. The main aim of the current study was to determine whether adult wasps or parasitized ticks can be found from a tick-infested island in southwestern Finland, using field collections and molecular methods. Following the initial discovery of an adult I. hookeri female on Seili Island, we set out to collect further specimens via sweep netting and Malaise trappings between May and October 2017. Furthermore, 1310 Ixodes ricinus (1220 nymphs, 90 adults) collected from the island during 2012-2014 were screened for I. hookeri DNA using qPCR. Whereas no further wasp specimens could be collected via sweep netting or Malaise trappings, I. hookeri DNA was consistently detected in I. ricinus nymphs (annual minimum infection rates in 2012, 2013, and 2014: 2.3, 0.4, and 0.5%, respectively), whereas all adult samples were negative. Although the annually repeated detections of parasitized ticks suggest that the wasp inhabits the island, further field and molecular surveys are needed to more comprehensively determine the status and stability of the population.
Sexes often differ in foraging and diet, which is associated with sex differences in size, trophic morphology, use of habitats, and/or life history tactics. Herein, strikingly similar diets were found for adult sexes of a dragonfly (Leucorrhinia intacta), based on comparing 141 dietary taxa identified from the metabarcoding of mitochondrial DNA archived in feces. Arthropods in > 5% of samples included five species of dipterans, two hemipterans, two spider species and one parasitic mite. The mite was not traditional prey as its presence was likely due to DNA contamination of samples arising through parasitism or possibly via accidental consumption during grooming, and therefore the mite was excluded from diet characterizations. Common prey species were found with statistically indistinguishable frequencies in male and female diets, with one exception of an aphid more often found in male diets, although this pattern was not robust to corrections for multiple statistical tests. While rare prey species were often found in diets of only one sex, instances of this were more frequent in the more oft-sampled females, suggesting sampling artefact. Sexes did not differ in the mean prey species richness in their diets. Overall, sexes showed statistically indistinguishable diets both on a prey species-by-species basis and in terms of multivariate characterizations of diet composition, derived from presence-absence data of prey species analyzed via PERMANOVA and accumulation curves. Males and females may have similar diets by being both opportunistic and generalist predators of arthropods, using the same foraging habitats and having similar sizes and flight agilities. Notably, similarities in diet between sexes occur alongside large interindividual differences in diet, within sexes. Researchers intending on explaining adaptive sex differences in diet should consider characteristics of species whose sexes show similar diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.