Hyperuricemia is a significant factor in a variety of diseases, including gout and cardiovascular diseases. Although renal excretion largely determines plasma urate concentration, the molecular mechanism of renal urate handling remains elusive. Previously, we identified a major urate reabsorptive transporter, URAT1 (SLC22A12), on the apical side of the renal proximal tubular cells. However, it is not known how urate taken up by URAT1 exits from the tubular cell to the systemic circulation. Here, we report that a sugar transport facilitator family member protein GLUT9 (SLC2A9) functions as an efflux transporter of urate from the tubular cell. GLUT9-expressed Xenopus oocytes mediated saturable urate transport (K m : 365 ؎ 42 M). The transport was Na ؉ -independent and enhanced at high concentrations of extracellular potassium favoring negative to positive potential direction. Substrate specificity and pyrazinoate sensitivity of GLUT9 was distinct from those of URAT1. The in vivo role of GLUT9 is supported by the fact that a renal hypouricemia patient without any mutations in SLC22A12 was found to have a missense mutation in SLC2A9, which reduced urate transport activity in vitro. Based on these data, we propose a novel model of transcellular urate transport in the kidney; Remunurate is taken up via apically located URAT1 and exits the cell via basolaterally located GLUT9, which we suggest be renamed URATv1 (voltage-driven urate transporter 1).Urate (uric acid), an end product of purine metabolism in humans because of the genetic silencing of hepatic uricase, is now recognized as a natural antioxidant that has neuroprotective properties (1). Despite its beneficial role, elevation of the serum urate level is correlated with gout, hypertension, and cardiovascular and renal diseases (1, 2). The kidney plays a dominant role in maintaining plasma urate levels through the excretion process; it eliminates ϳ70% of the daily urate production (3). Therefore, it is important to understand the mechanism of renal urate handling because underexcretion of urate has been demonstrated in the majority of hyperuricemia patients (4).Since urate is a weak acid at physiological pH (pK a , 5.75), it hardly permeates the plasma membrane of cells in the absence of transport proteins (3). In 2002, we identified a long hypothesized urate-anion exchanger, URAT1, 2 encoded by SLC22A12, that localized on the apical side of the renal proximal tubule (5). Despite several potential candidate proteins for urate transport such as UAT (uric acid transporter), OAT1 (organic anionic transporter 1), OAT3, OAT4, OATv1/NPT1 (sodium phosphate transporter 1), MRP4 (multidrug resistance-associated protein), and OAT10 (6 -10), URAT1 is the sole transporter whose physiological role in renal urate reabsorption is established, based on the fact that lossof-function mutations in URAT1 cause renal hypouricemia (5). However, it is not known how urate taken up via URAT1 exits from the tubular cell (11). Moreover, there are patients with renal hypouricemia who had no...
Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis 1,2 . Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B 0 AT1 (ref. 4). We isolated the human homolog of B 0 AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter.Despite molecular characterization of other proximal tubule transporters, the neutral amino acid carrier defective in Hartnup disorder (OMIM 2345000) has resisted genetic identification 2 . We carried out homozygosity mapping and fine mapping in ten members of two consanguineous families (the siblings in whom Hartnup disorder was originally discovered 1 ; family A; Fig. 1a) and in siblings from the US 5 (family B; Fig. 1a). We found linkage of Hartnup disorder to 5p15 only in family A, with a maximum combined multipoint lod score of 2.31 at 11.24 cM (P ¼ 0.01). This confirmed our previous results showing linkage to chromosome 5p15 (ref.3). In family B, we obtained a maximum multipoint lod score of À2.40 at 15.81 cM.We simultaneously pursued two mouse monoamine transporterrelated orphan genes, Slc6a18 (also called Xtrp2; ref. 6) and Slc6a19 (encoding B 0 AT1; ref. 4). These members of the SLC6 family of transporters map to the mouse chromosomal region that is homologous to human chromosome 5p15. Both Slc6a18 and Slc6a19 showed abundant expression in mouse kidney, as assessed by real time RT-PCR (Fig. 2a). Immunohistochemistry confirmed expression of mouse B 0 AT1 at the brush border of small intestine (data not shown) and kidney proximal tubule cells (Fig. 2b).The human homolog, B 0 AT1, is encoded by the predicted locus SLC6A19, with a 2,022-bp open reading frame. PCR amplification using human kidney cDNA produced a 1,905-bp product with 100% identity to SLC6A19 sequence. We next determined the genomic organization of SLC6A19, which has a stop codon 28 bases before the ATG in the 5¢ untranslated region. SLC6A19 has 12 coding exons. The B 0 AT1 protein contains 634 amino acids and 12 predicted transmembrane regions (Fig. 1b). In a panel of human cDNAs, we detected robust expression of SLC6A19 in kidney and small intestine, with minimal expression in pancreas (Fig. 2c). SLC6A19 was also expressed in stomach, liver, duodenum and ileocecum (data n...
A cDNA that encodes a novel Na ؉ -independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as L-leucine, L-isoleucine, L-valine, and L-phenylalanine. The LAT3-mediated transport was Na ؉ -independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-upregulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of L-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, L-leucinol, Lvalinol, and L-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters.
The tubular secretion of diuretics in the proximal tubule has been shown to be critical for the action of drugs. To elucidate the molecular mechanisms for the tubular excretion of diuretics, we have elucidated the interactions of human organic anion transporters (hOATs) with diuretics using cells stably expressing hOATs. Diuretics tested were thiazides, including chlorothiazide, cyclothiazide, hydrochlorothiazide, and trichlormethiazide; loop diuretics, including bumetanide, ethacrynic acid, and furosemide; and carbonic anhydrase inhibitors, including acetazolamide and methazolamide. These diuretics inhibited organic anion uptake mediated by hOAT1, hOAT2, hOAT3, and hOAT4 in a competitive manner. hOAT1 exhibited the highest affinity interactions for thiazides, whereas hOAT3 did those for loop diuretics. hOAT1, hOAT3, and hOAT4 but not hOAT2, mediated the uptake of bumetanide. hOAT3 and hOAT4, but not hOAT1 mediated the efflux of bumetanide. hOAT1 and hOAT3, but not hOAT2 and hOAT4 mediated the uptake of furosemide. In conclusion, it was suggested that hOAT1 may play an important role in the basolateral uptake of thiazides, and hOAT3 in the uptake of loop diuretics. In addition, it was also suggested that bumetanide taken up by hOAT3 and/or hOAT1 is excreted into the urine by hOAT4.
System L is a major nutrient transport system responsible for the Na(+)-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]L-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]L-leucine by T24 cells is Na(+)-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]L-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]L-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]L-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]L-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.