The apportionment of human genetic diversity within and between populations has been measured to understand human relatedness and demographic history. Likewise, the distribution of archaic ancestry in modern populations can be leveraged to better understand the interaction between our species and its archaic relatives. Resolving the interactions between modern and archaic human populations can be difficult, as archaic variants in modern populations have been shaped by genetic drift, bottlenecks and gene flow. Here, we investigate the distribution of archaic variation in Eurasian populations. We find that archaic ancestry coverage at the individual- and population-level present distinct patterns in modern human populations: South Asians have nearly twice the number of population-unique archaic alleles compared with Europeans or East Asians, indicating that these populations experienced differing demographic and archaic admixture events. We confirm previous observations that East Asian individuals have more Neanderthal ancestry than European individuals, but surprisingly, when we compare the number of single nucleotide polymorphisms with archaic alleles found across a population, Europeans have more Neanderthal ancestry than East Asians. We compare these results to simulated models and conclude that these patterns are consistent with multiple admixture events between modern humans and Neanderthals. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
The apportionment of human genetic diversity within and between populations has been measured to understand human relatedness and demographic history. Likewise, the distribution of archaic ancestry in modern populations can be leveraged to better understand the interaction between our species and its archaic relatives, and the impact of natural selection on archaic segments of the human genome. Resolving these interactions can be difficult, as archaic variants in modern populations have also been shaped by genetic drift, bottlenecks, and gene flow. Here, we investigate the apportionment of archaic variation in Eurasian populations. We find that archaic genome coverage at the individual- and population-level present unique patterns in modern human population: South Asians have an elevated count of population-unique archaic SNPs, and Europeans and East Asians have a higher degree of archaic SNP sharing, indicating that population demography and archaic admixture events had distinct effects in these populations. We confirm previous observations that East Asians have more Neanderthal ancestry than Europeans at an individual level, but surprisingly Europeans have more Neandertal ancestry at a population level. In comparing these results to our simulated models, we conclude that these patterns likely reflect a complex series of interactions between modern humans and archaic populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.