Thrombotic thrombocytopenic purpura (TTP) is a microangiopathy often associated with a severely decreased activity of ADAMTS13. In plasma of the majority of patients with TTP, antibodies are present that inhibit the von Willebrand factor (VWF) processing activity of ADAMTS13. We describe a sensitive assay that monitors binding of recombinant ADAMTS13 to immobilized IgG derived from patient plasma. Analysis of fifteen patients with TTP and severely reduced ADAMTS13 activity revealed that in all patients antibodies directed to ADAMTS13 were present. Levels of anti-ADAMTS13 antibodies varied considerably among patients, specific antibody levels in plasma range from less than 100 ng/ml to over 1 microg/ml. Longitudinal analysis in three patients revealed that anti-ADAMTS13 antibody levels declined with different kinetics. For further characterization of anti-ADAMTS13 antibodies, we prepared a series of recombinant fragments corresponding to the various ADAMTS13 domains. All seven TTP plasma samples tested, showed reactivity of antibodies towards a fragment consisting of the disintegrin/TSR1/cysteine-rich/spacer domains. In one patient, we also observed reactivity towards the TSR2-8 repeats. No binding of antibodies to propeptide, metalloprotease and CUB domains was detected. To further delineate the binding site in the disintegrin/TSR1/cysteine-rich/spacer region, we prepared additional ADAMTS13 fragments. Antibodies directed towards the cysteine-rich/spacer fragment were found in all plasma samples analyzed. No antibodies reacting with the disintegrin/TSR1 domains were detected. A recombinant fragment comprising the spacer domain was recognized by all patients samples analyzed, suggesting that the 130-amino-acid spacer domain harbors a major binding site for anti-ADAMTS-13 antibodies.
The development of inhibitory antibodies to factor VIII in patients affected by a mild form of hemophilia A (factor VIII < 0.05 IU/mL) is considered a rare event. In this study, we evaluated the relationship between genotype and anti-factor VIII antibody formation in a patient with mild hemophilia A. Mutation analysis showed that a missense mutation in the factor VIII gene leading to replacement of Arg593 by Cys in the A2 domain of factor VIII was associated with hemophilia A in this patient. The anti-factor VIII antibodies present in the patient's plasma were characterized using metabolically labeled factor VIII fragments expressed in insect cells. The anti-factor VIII antibodies, composed of subclasses IgG2 and IgG4, reacted with both the fragment corresponding to the factor VIII heavy chain and the A2 domain. The Arg593 → Cys substitution was introduced into the cDNA encoding the A2 domain of factor VIII and the resulting construct was expressed in insect cells. Strikingly, the metabolically labeled A2 domain carrying the Arg593 → Cys mutation was not recognized by the anti-factor VIII antibodies present in the plasma of the patient. These data indicate that the anti-factor VIII antibodies are exclusively directed against exogenous factor VIII. This strongly suggests that the Arg593 → Cys substitution results in recognition of wild-type factor VIII as nonself and is thereby related to the formation of anti-factor VIII antibodies after factor VIII replacement therapy in this particular patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.