Intestinal damage in malnutrition constitutes a threat to the survival of many thousands of children globally. We studied children in Lusaka, Zambia, with severe acute malnutrition (SAM) and persistent diarrhea using endoscopy, biopsy and analysis of markers and protective proteins in blood and intestinal secretions. We carried out parallel investigations in apparently healthy adults, and analyzed biomarkers only in apparently healthy children. Villus height and crypt depth did not differ in children with SAM and adult controls, but epithelial surface was reduced in children with SAM (median 445, interquartile range (IQR) 388, 562 μm per 100 μm muscularis mucosae) compared to adults (578, IQR 465,709; P = 0.004). Histological lesions and disruptions of claudin-4 and E-cadherin were most pronounced in children with SAM. Circulating lipopolysaccharide, a marker of bacterial translocation, was higher in malnourished children (251, IQR 110,460 EU/ml) than in healthy children (51, IQR 0,111; P = 0.0001). Other translocation markers showed similar patterns. Anti-Deamidated Gliadin Peptide IgG concentrations, although within the normal range, were higher in children with SAM (median 2.7 U/ml, IQR 1.5–8.6) than in adults (1.6, 1.4–2.1; P = 0.005), and were inversely correlated with villus height (ρ = − 0.79, n = 13, P = 0.001). Malnutrition enteropathy is associated with intestinal barrier failure and immune dysregulation.
IntroductionEnvironmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms.MethodsWe studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test.ResultsCLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins.ConclusionsConfocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE.
Environmental enteropathy is a major contributor to growth faltering in millions of children in Africa and South Asia. We carried out a longitudinal, observational and interventional study in Lusaka, Zambia, of 297 children with stunting (aged 2–17 months at recruitment) and 46 control children who had good growth (aged 1–5 months at recruitment). Control children contributed data only at baseline. Children were provided with nutritional supplementation of daily cornmeal-soy blend, an egg and a micronutrient sprinkle, and were followed up to 24 months of age. Children whose growth did not improve over 4–6 months of nutritional supplementation were classified as having non-responsive stunting. We monitored microbial translocation from the gut lumen to the bloodstream in the cohort with non-responsive stunting (n = 108) by measuring circulating lipopolysaccharide (LPS), LPS-binding protein and soluble CD14 at baseline and when non-response was declared. We found that microbial translocation decreased with increasing age, such that LPS declined in 81 (75%) of 108 children with non-responsive stunting, despite sustained pathogen pressure and ongoing intestinal epithelial damage. We used confocal laser endomicroscopy and found that mucosal leakiness also declined with age. However, expression of brush border enzyme, nutrient transporter and mucosal barrier genes in intestinal biopsies did not change with age or correlate with biomarkers of microbial translocation. We propose that environmental enteropathy arises through adaptation to pathogen-mediated epithelial damage. Although environmental enteropathy reduces microbial translocation, it does so at the cost of impaired growth. The reduced epithelial surface area imposed by villus blunting may explain these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.