Legionellae can infect and multiply intracellularly in both human phagocytic cells and protozoa. Growth of legionellae in the absence of protozoa has been documented only on complex laboratory media. The hypothesis upon which this study was based was that biofilm matrices, known to provide a habitat and a gradient of nutrients, might allow the survival and multiplication of legionellae outside a host cell. This study determined whether Legionella pneumophila can colonize and grow in biofilms with and without an association with Hartmannella vermiformis. The laboratory model used a rotating disc reactor at a retention time of 67 h to grow biofilms on stainless steel coupons. The biofilm was composed of Pseudomonas aeruginosa, Klebsiella pneumoniae and a Flavobacterium sp. The levels of L. pneumophila cells present in the biofilm were monitored for 15 d, with and without the presence of H. vermiformis, and it was found that, although unable to replicate in the absence of H. vermiformis, L. pneumophila was able to persist.
The increase in reporting of nosocomial legionnaires' disease was attributable to increased use of urinary antigen tests; prior cases may have gone unrecognized. Risk of legionnaires' disease in hospital patients was better predicted by the proportion of water-system sites testing positive for Legionella than by the measured concentration of Legionella bacteria. Use of monochloramine by municipalities for residual drinking water disinfection may help prevent legionnaires' disease.
cSince the establishment of sequence-based typing as the gold standard for DNA-based typing of Legionella pneumophila, the Legionella laboratory at the Centers for Disease Control and Prevention (CDC) has conducted routine sequence-based typing (SBT) analysis of all incoming L. pneumophila serogroup 1 (Lp1) isolates to identify potential links between cases and to better understand genetic diversity and clonal expansion among L. pneumophila bacteria. Retrospective genotyping of Lp1 isolates from sporadic cases and Legionnaires' disease (LD) outbreaks deposited into the CDC reference collection since 1982 has been completed. For this study, we compared the distribution of sequence types (STs) among Lp1 isolates implicated in 26 outbreaks in the United States, 571 clinical isolates from sporadic cases of LD in the United States, and 149 environmental isolates with no known association with LD. The Lp1 isolates under study had been deposited into our collection between 1982 and 2012. We identified 17 outbreak-associated STs, 153 sporadic STs, and 49 environmental STs. We observed that Lp1 STs from outbreaks and sporadic cases are more similar to each other than either group is to environmental STs. The most frequent ST for both sporadic and environmental isolates was ST1, accounting for 25% and 49% of the total number of isolates, respectively. The STs shared by both outbreak-associated and sporadic Lp1 included ST1, ST35, ST36, ST37, and ST222. The STs most commonly found in sporadic and outbreak-associated Lp1 populations may have an increased ability to cause disease and thus may require special attention when detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.