Cultural transmission, the social learning of information or behaviors from conspecifics, is believed to occur in a number of groups of animals, including primates, cetaceans, and birds. Cultural traits can be passed vertically (from parents to offspring), obliquely (from the previous generation via a nonparent model to younger individuals), or horizontally (between unrelated individuals from similar age classes or within generations). Male humpback whales (Megaptera novaeangliae) have a highly stereotyped, repetitive, and progressively evolving vocal sexual display or "song" that functions in sexual selection (through mate attraction and/or male social sorting). All males within a population conform to the current version of the display (song type), and similarities may exist among the songs of populations within an ocean basin. Here we present a striking pattern of horizontal transmission: multiple song types spread rapidly and repeatedly in a unidirectional manner, like cultural ripples, eastward through the populations in the western and central South Pacific over an 11-year period. This is the first documentation of a repeated, dynamic cultural change occurring across multiple populations at such a large geographic scale.
Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise – let alone understand – the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, “Analysing vocal sequences in animals”. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.
Animal culture, defined as "information or behavior-shared within a community-which is acquired from conspecifics through some form of social learning" (1), can have important consequences for the survival and reproduction of individuals, social groups, and potentially, entire populations (1, 2). Yet, until recently, conservation strategies and policies have focused primarily on broad demographic responses and the preservation of genetically defined, evolutionarily significant units. A burgeoning body of evidence on cultural transmission and other aspects of sociality (3) is now affording critical insights into what should be conserved (going beyond the protection of genetic diversity, to consider adaptive aspects of phenotypic variation), and why specific conservation programs succeed (e.g., through facilitating the resilience of cultural diversity) while others fail (e.g., by neglecting key repositories of socially transmitted knowledge). Here, we highlight how international legal instruments, such as the Convention on the Conservation of Migratory Species of Wild Animals (CMS), can facilitate smart, targeted conservation of a wide range of taxa, by explicitly considering aspects of their sociality and cultures. CONSEQUENCES OF SOCIAL KNOWLEDGE An important aspect of social learning is the speed with which new behaviors can potentially spread through populations, with effects that may be positive (e.g., adaptive exploitation of a new food source) or negative (e.g., increasing conflict with humans, such as when sperm whales learn to remove fish from longlines) (2). Transmission can be mediated by an inherent propensity to adopt innovations (e.g., "lobtail" feeding in humpback whales (1)), or curbed by cultural conservatism (e.g., southern resident killer whales' persistent foraging specialization on Chinook salmon (2)). Social learning can result in the emergence of subpopulations with distinctive behavioral profiles, erecting social barriers, as observed in distinct vocal clans of sperm whales (see the Figure). Culturally mediated population structure has important implications for conservation efforts (4), as it can influence species-wide phenotypic diversity and adaptability to changing conditions (5). In some cases, such as humpback or blue whale song, cultural variation can reflect demography and facilitate more efficient, or less invasive, assays of contemporary genetic population structure (1, 4). Most profoundly, culture can play a causal role in establishing and maintaining distinct evolutionary trajectories (6). Another consequence of social learning can be the increased importance of key individuals as repositories of accumulated knowledge, making their targeted protection particularly important for the persistence of social units. For example, the experience of African elephant matriarchs (see
Humpback whales have a continually evolving vocal sexual display, or "song," that appears to undergo both evolutionary and "revolutionary" change. All males within a population adhere to the current content and arrangement of the song. Populations within an ocean basin share similarities in their songs; this sharing is complex as multiple variations of the song (song types) may be present within a region at any one time. To quantitatively investigate the similarity of song types, songs were compared at both the individual singer and population level using the Levenshtein distance technique and cluster analysis. The highly stereotyped sequences of themes from the songs of 211 individuals from populations within the western and central South Pacific region from 1998 through 2008 were grouped together based on the percentage of song similarity, and compared to qualitatively assigned song types. The analysis produced clusters of highly similar songs that agreed with previous qualitative assignments. Each cluster contained songs from multiple populations and years, confirming the eastward spread of song types and their progressive evolution through the study region. Quantifying song similarity and exchange will assist in understanding broader song dynamics and contribute to the use of vocal displays as population identifiers.
Cultural processes occur in a wide variety of animal taxa, from insects to cetaceans. The songs of humpback whales are one of the most striking examples of the transmission of a cultural trait and social learning in any nonhuman animal. To understand how songs are learned, we investigate rare cases of song hybridization, where parts of an existing song are spliced with a new one, likely before an individual totally adopts the new song. Song unit sequences were extracted from over 9,300 phrases recorded during two song revolutions across the South Pacific Ocean, allowing fine-scale analysis of composition and sequencing. In hybrid songs the current and new songs were spliced together in two specific ways: () singers placed a single hybrid phrase, in which content from both songs were combined, between the two song types when transitioning from one to the other, and/or () singers spliced complete themes from the revolutionary song into the current song. Sequence analysis indicated that both processes were governed by structural similarity rules. Hybrid phrases or theme substitutions occurred at points in the songs where both songs contained "similar sounds arranged in a similar pattern." Songs appear to be learned as segments (themes/phrase types), akin to birdsong and human language acquisition, and these can be combined in predictable ways if the underlying structural pattern is similar. These snapshots of song change provide insights into the mechanisms underlying song learning in humpback whales, and comparative perspectives on the evolution of human language and culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.