Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection ( w AlbB Q ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the w AlbB Q transinfection is near-identical to the reference w AlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available w AlbB genome sequences, highlighting the potential diversity of w AlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of w AlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between w AlbB infection and nuclear background for any trait. The w AlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of w AlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations. Importance Wolbachia bacteria are being used to control the transmission of dengue and other arboviruses by mosquitoes. For Wolbachia release programs to be effective globally, Wolbachia infections must be stable across mosquito populations from different locations. In this study, we transferred Wolbachia (strain w AlbB) to Aedes aegypti mosquitoes with an Australian genotype and introduced the infection to Malaysian mosquitoes through backcrossing. We found that the phenotypic effects of Wolbachia are stable across both mosquito backgrounds. We sequenced the genome of w AlbB and found very few genetic changes despite spending over 15 years in a novel mosquito host. Our results suggest that the effects of Wolbachia infections are likely to remain stable across time and host genotype.
Wolbachia bacteria have been identified as a tool for reducing the transmission of arboviruses transmitted by Aedes aegypti. Research groups around the world are now mass rearing Wolbachia-infected Ae. aegypti for deliberate release. We investigated the fitness impact of a crucial element of mass rearing: the blood meal required by female Ae. aegypti to lay eggs. Although Ae. aegypti almost exclusively feed on human blood, it is often difficult to use human blood in disease-endemic settings. When females were fed on sheep or pig blood rather than human blood, egg hatch rates decreased in all three lines tested (uninfected, or infected by wMel, or wAlbB Wolbachia). This finding was particularly pronounced when fed on sheep blood, although fecundity was not affected. Some of these effects persisted after an additional generation on human blood. Attempts to keep populations on sheep and pig blood sources only partly succeeded, suggesting that strong adaptation is required to develop a stably infected line on an alternative blood source. There was a decrease in Wolbachia density when Ae. aegypti were fed on non-human blood sources. Density increased in lines kept for multiple generations on the alternate sources but was still reduced relative to lines kept on human blood. These findings suggest that sheep and pig blood will entail a cost when used for maintaining Wolbachia-infected Ae. aegypti. These costs should be taken into account when planning mass release programs.
Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection (wAlbBQ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the wAlbBQ transinfection is near-identical to the reference wAlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available wAlbB genome sequences, highlighting the potential diversity of wAlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of wAlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between wAlbB infection and nuclear background for any trait. The wAlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of wAlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations.
The seroprevalence of feline alphaherpesvirus-1 (FHV-1) in feral cats in Victoria, Australia, was last assessed in 1981 when serum-virus-neutralising antibodies (VNAb) against FHV-1 were detected in 11% of the sampled population from two Victorian locations. In this current study, VNAb were assessed in serum from feral cats located in Phillip Island, Point Cook and Hattah in the Mallee region in Northern Victoria. In feral cats, the seroprevalence of VNAb to FHV-1 was highest in Point Cook at 24.6% (17/69), followed by Phillip Island at 16.7% (11/66) and Hattah where no feral cats had detectable VNAb to FHV-1 (0/12). In contrast, virus-neutralising antibodies were observed in 84.1% (37/44) of Victorian-owned cats. This higher seroprevalence in owned cats is likely due to the use of FHV-1 vaccines; however, the vaccination history of the cats was not known and the development of neutralising antibodies after infection or vaccination can vary. The results are useful for understanding FHV-1 exposure in feral and owned cats and are important background information in the context of any potential future use of FHV-1-vectored vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.