Extracellular vesicles (EV) are membrane encapsulated nanoparticles that can function in intercellular communication, and their presence in biofluids can be indicative for (patho)physiological conditions. Studies aiming to resolve functionalities of EV or to discover EV-associated biomarkers for disease in liquid biopsies are hampered by limitations of current protocols to isolate EV from biofluids or cell culture medium. EV isolation is complicated by the >10 5-fold numerical excess of other types of particles, including lipoproteins and protein complexes. In addition to persisting contaminants, currently available EV isolation methods may suffer from inefficient EV recovery, bias for EV subtypes, interference with the integrity of EV membranes, and loss of EV functionality. In this study, we established a novel three-step non-selective method to isolate EV from blood or cell culture media with both high yield and purity, resulting in 71% recovery and near to complete elimination of unrelated (lipo)proteins. This EV isolation procedure is independent of illdefined commercial kits, and apart from an ultracentrifuge, does not require specialised expensive equipment.
Splenic CD169 macrophages are located in the marginal zone to efficiently capture blood-borne pathogens. Here, we investigate the requirements for the induction of CD8 T cell responses by antigens (Ags) bound by CD169 macrophages. Upon Ag targeting to CD169 macrophages, we show that BATF3-dependent CD8α dendritic cells (DCs) are crucial for DNGR-1-mediated cross-priming of CD8 T cell responses. In addition, we demonstrate that CD169, a sialic acid binding lectin involved in cell-cell contact, preferentially binds to CD8α DCs and that Ag transfer to CD8α DCs and subsequent T cell activation is dependent on the sialic acid-binding capacity of CD169. Finally, functional CD169 mediates optimal CD8 T cell responses to modified vaccinia Ankara virus infection. Together, these data indicate that the collaboration of CD169 macrophages and CD8α DCs for the initiation of effective CD8 T cell responses is facilitated by binding of CD169 to sialic acid containing ligands on CD8α DCs.
Ag delivery to specific APCs is an attractive approach in developing strategies for vaccination. CD169+ macrophages in the marginal zone of the spleen represent a suitable target for delivery of Ag because of their strategic location, which is optimal for the capture of blood‐borne Ag and their close proximity to B cells and T cells in the white pulp. Here we show that Ag targeting to CD169+ macrophages in mice resulted in strong, isotype‐switched, high‐affinity Ab production and the preferential induction and long‐term persistence of Ag‐specific GC B cells and follicular Th cells. In agreement with these observations, CD169+ macrophages retained intact Ag, induced cognate activation of B cells, and increased expression of costimulatory molecules upon activation. In addition, macrophages were required for the production of cytokines that promote B‐cell responses. Our results identify CD169+ macrophages as promoters of high‐affinity humoral immune responses and emphasize the value of CD169 as target for Ag delivery to improve vaccine responses.
SummaryCD169-positive macrophages in the marginal zone of the spleen and subcapsular sinus of lymph nodes play an important role as gatekeepers, strategically located to capture pathogens. Here we identified a population of CD169-positive macrophages in the colon and investigated which factors influenced their development. Murine colonic CD115 + F4/80 lo CD11c lo macrophages expressing CD169 were present in the lamina propria, mainly surrounding the crypts. In spite of the high levels of bacterial flora in the colon and the importance of Toll-like receptor signalling in mucosal homeostasis, the presence of CD169 + macrophages was not affected in mice that were deficient in MyD88-mediated Toll-like receptor signalling and in mice in which the bacterial flora was eradicated. Whereas the development of splenic CD169 + macrophages was dependent on lymphotoxin a, colonic CD169 + macrophages were present in normal numbers in lymphotoxin a-deficient mice. In contrast, reduced numbers of CD169 + macrophages were found in the colon of mice deficient in vitamin A, whereas CD169 + macrophages in the spleen were unaffected. In conclusion, we identified a new macrophage subset in the lamina propria of the colon characterized by the expression of CD169. Its differentiation, unlike CD169 + macrophages in lymphoid organs, is independent of lymphotoxin a signalling, but requires vitamin A.
Extracellular vesicles (EV) that are released by immune cells are studied intensively for their functions in immune regulation and are scrutinized for their potential in human immunotherapy, for example against cancer. In our search for signals that stimulate the release of functional EV by dendritic cells we observed that LPS-activated human monocyte-derived dendritic cells (moDC) changed their morphological characteristics upon contact with non-cognate activated bystander T-cells, while non-activated bystander T-cells had no effect. Exposure to activated bystander T-cells also stimulated the release of EV-associated proteins by moDC, particularly CD63, and ICAM-1, although the extent of stimulation varied between individual donors. Stimulation of moDC with activated bystander T-cells also increased the release of EV-associated miR155, which is a known central modulator of T-cell responses. Functionally, we observed that EV from moDC that were licensed by activated bystander T-cells exhibited a capacity for antigen-specific T-cell activation. Taken together, these results suggest that non-cognatei interactions between DC and bystander T-cells modulates third party antigen-specific T-cell responses via EV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.