<p>In [2], Downey and Greenberg use the ordinals below ε0 to bound the number of mind-changes of computable approximations. This gives rise to a new transfinite hierarchy in the c.e. degrees; the totally α-c.a. degrees. This hierarchy is significant because it unifies the combinatorics of many constructions as well as giving natural definability results in the c.e. Turing degrees. We study the structure of this hierarchy; in particular we investigate collapse in upper cones. We give a proof in which we build a c.e. set using a strategy tree to show there is no uniform way to find a maximal totally ω^2-c.a. degree above a given totally ω-c.a. degree. Then we discuss extensions of this result.</p>
<p>In [2], Downey and Greenberg use the ordinals below ε0 to bound the number of mind-changes of computable approximations. This gives rise to a new transfinite hierarchy in the c.e. degrees; the totally α-c.a. degrees. This hierarchy is significant because it unifies the combinatorics of many constructions as well as giving natural definability results in the c.e. Turing degrees. We study the structure of this hierarchy; in particular we investigate collapse in upper cones. We give a proof in which we build a c.e. set using a strategy tree to show there is no uniform way to find a maximal totally ω^2-c.a. degree above a given totally ω-c.a. degree. Then we discuss extensions of this result.</p>
A transfinite hierarchy of Turing degrees of c.e.\ sets has been used to calibrate the dynamics of families of constructions in computability theory, and yields natural definability results. We review the main results of the area, and discuss splittings of c.e.\ degrees, and finding maximal degrees in upper cones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.