Purpose: Treatment effect or radiation necrosis after stereotactic radiosurgery (SRS) for brain metastases is a common phenomenon often indistinguishable from true progression. Radiomics is an emerging field that promises to improve on conventional imaging. In this study, we sought to apply a radiomics-based prediction model to the problem of diagnosing treatment effect after SRS. Methods and Materials: We included patients in the Johns Hopkins Health System who were treated with SRS for brain metastases who subsequently underwent resection for symptomatic growth. We also included cases of likely treatment effect in which lesions grew but subsequently regressed spontaneously. Lesions were segmented semiautomatically on preoperative T1 postcontrast and T2 fluid-attenuated inversion recovery magnetic resonance imaging, and radiomic features were extracted with software developed in-house. Top-performing features on univariate logistic regression were entered into a hybrid feature selection/classification model, IsoSVM, with parameter optimization and further feature selection performed using leave-one-out cross-validation. Final model performance was assessed by 10-fold cross-validation with 100 repeats. All cases were independently reviewed by a board-certified neuroradiologist for comparison. Results: We identified 82 treated lesions across 66 patients, with 77 lesions having pathologic confirmation. There were 51 radiomic features extracted per segmented lesion on each magnetic resonance imaging sequence. An optimized IsoSVM classifier based on top-ranked radiomic features had sensitivity and specificity of 65.38% and 86.67%, respectively, with an area under the curve of 0.81 on leave-one-out cross-validation. Only 73% of cases were classifiable by the neuroradiologist, with a sensitivity of 97% and specificity of 19%. Conclusions: Radiomics holds promise for differentiating between treatment effect and true progression in brain metastases treated with SRS. A predictive model built on radiomic features from an institutional cohort performed well on cross-validation testing. These results warrant further validation in independent datasets. Such work could prove invaluable for guiding management of individual patients and assessing outcomes of novel interventions.
Purpose To investigate the potential role of incidental heart irradiation on the risk of radiation pneumonitis (RP) for patients receiving definitive radiation therapy for non-small-cell lung cancer (NSCLC). Material and methods Two hundred and nine patient datasets were available for this study. Heart and lung dose-volume parameters were extracted for modeling, based on Monte Carlo-based heterogeneity corrected dose distributions. Clinical variables tested included age, gender, chemotherapy, pre-treatment weight-loss, performance status, and smoking history. The risk of RP was modeled using logistic regression. Results The most significant univariate variables were heart related, such as heart heart V65 (percent volume receiving at least 65 Gy) (Spearman Rs = 0.245, p < 0.001). The best-performing logistic regression model included heart D10 (minimum dose to the hottest 10% of the heart), lung D35, and maximum lung dose (Spearman Rs = 0.268, p < 0.0001). When classified by predicted risk, the RP incidence ratio between the most and least risky 1/3 of treatments was 4.8. The improvement in risk modeling using lung and heart variables was better than using lung variables alone. Conclusions These results suggest a previously unsuspected role of heart irradiation in many cases of RP.
The proposed model performed well was successfully validated and demonstrated the ability to predict acute severe dysphagia remarkably better than the physicians. Therefore, this model could be used in clinical practice to identify patients at high or low risk.
Tau plays a key role in Alzheimer’s disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.