The hepatitis C virus protease inhibitor boceprevir is a strong inhibitor of cytochrome P450 3A4 and 3A5 (CYP3A4/5). Cyclosporine and tacrolimus are calcineurin inhibitor immunosuppressants used to prevent organ rejection after liver transplantation; both are substrates of CYP3A4. This two-part pharmacokinetic interaction study evaluated boceprevir with cyclosporine (part 1) and tacrolimus (part 2). In part 1, 10 subjects received single-dose cyclosporine (100 mg) on day 1, single-dose boceprevir (800 mg) on day 3, and concomitant cyclosporine/boceprevir on day 4. After washout, subjects received boceprevir (800 mg three times a day) for 7 days plus single-dose cyclosporine (100 mg) on day 6. In part 2A, 12 subjects received single-dose tacrolimus (0.5 mg). After washout, they received boceprevir (800 mg three times a day) for 11 days plus single-dose tacrolimus (0.5 mg) on day 6. In part 2B, 10 subjects received single-dose boceprevir (800 mg) and 24 hours later received boceprevir (800 mg) plus tacrolimus (0.5 mg). Coadministration of boceprevir with cyclosporine/tacrolimus was well tolerated. Concomitant boceprevir increased the area under the concentration-time curve from time 0 to infinity after single dosing (AUC inf ) and maximum observed plasma (or blood) concentration (C max ) of cyclosporine with geometric mean ratios (GMRs) (90% confidence interval [CI]) of 2.7 (2.4-3.1) and 2.0 (1.7-2.4), respectively. Concomitant boceprevir increased the AUC inf and C max of tacrolimus with GMRs (90% CI) of 17 (14-21) and 9.9 (8.0-12), respectively. Neither cyclosporine nor tacrolimus coadministration had a meaningful effect on boceprevir pharmacokinetics. Conclusion: Dose adjustments of cyclosporine should be anticipated when administered with boceprevir, guided by close monitoring of cyclosporine blood concentrations and frequent assessments of renal function and cyclosporine-related side effects. Administration of boceprevir plus tacrolimus requires significant dose reduction and prolongation of the dosing interval for tacrolimus, with close monitoring of tacrolimus blood concentrations and frequent assessments of renal function and tacrolimusrelated side effects. (HEPATOLOGY 2012;56:1622-1630
Concomitant administration of boceprevir with PI/r resulted in reduced exposures of PI and boceprevir. These drug-drug interactions may reduce the effectiveness of PI/r and/or boceprevir when coadministered.
Letermovir is a human cytomegalovirus terminase inhibitor for cytomegalovirus infection prophylaxis in hematopoietic stem cell transplant recipients. Posaconazole (POS), a substrate of glucuronosyltransferase and P-glycoprotein, and voriconazole (VRC), a substrate of CYP2C9/19, are commonly administered to transplant recipients. Because coadministration of these azoles with letermovir is expected, the effect of letermovir on exposure to these antifungals was investigated. Two trials were conducted in healthy female subjects 18 to 55 years of age. In trial 1, single-dose POS 300 mg was administered alone, followed by a 7-day washout; then letermovir 480 mg once daily was given for 14 days with POS 300 mg coadministered on day 14. In trial 2, on day 1 VRC 400 mg was given every 12 hours; on days 2 and 3, VRC 200 mg was given every 12 hours, and on day 4 VRC 200 mg. On days 5 to 8, letermovir 480 mg was given once daily. Days 9 to 12 repeated days 1 to 4 coadministered with letermovir 480 mg once daily. In both trials, blood samples were collected for the assessment of the pharmacokinetic profiles of the antifungals, and safety was assessed. The geometric mean ratios (90%CIs) for POS+letermovir/POS area under the curve and peak concentration were 0.98 (0.83, 1.17) and 1.11 (0.95, 1.29), respectively. Voriconazole+letermovir/VRC area under the curve and peak concentration geometric mean ratios were 0.56 (0.51, 0.62) and 0.61 (0.53, 0.71), respectively. All treatments were generally well tolerated. Letermovir did not affect POS pharmacokinetics to a clinically meaningful extent but decreased VRC exposure. These results suggest that letermovir may be a perpetrator of CYP2C9/19-mediated drug-drug interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.