The expression pattern of 1,529 yeast genes in response to sulfometuron methyl (SM) was analyzed by DNA microarray technology. SM, a potent herbicide, inhibits acetolactate synthase, a branched-chain amino acid biosynthetic enzyme. Exposure of yeast cells to 0.2 microg/ml SM resulted in 40% growth inhibition, a Gcn4p-mediated induction of genes involved in amino acid and cofactor biosynthesis, and starvation response. The accumulation of intermediates led to the induction of stress response genes and the repression of genes involved in carbohydrate metabolism, nucleotide biosynthesis, and sulfur assimilation. Extended exposure to SM led to a relaxation of the initial response and induction of sugar transporter and ergosterol biosynthetic genes, as well as repression of histone and lipid metabolic genes. Exposure to 5 microg/ml SM resulted in >98% growth inhibition and stimulated a similar initial expression change, but with no relaxation after extended exposure. Instead, more stress response and DNA damage repair genes become induced, suggesting a serious cellular consequence. Other salient features of metabolic regulation, such as the coordinated expression of cofactor biosynthetic genes with amino acid biosynthetic ones, were evident from our data. A potential link between SM sensitivity and ergosterol metabolism was uncovered by expression profiling and confirmed by genetic analysis.
A sequenced collection of plasmid-borne random fusions of Escherichia coli DNA to a Photorhabdus luminescens luxCDABE reporter was used as a starting point to select a set of 689 nonredundant functional gene fusions. This group, called LuxArray 1.0, represented 27% of the predicted transcriptional units in E. coli. High-density printing of the LuxArray 1.0 reporter strains to membranes on agar plates was used for simultaneous reporter gene assays of gene expression. The cellular response to nalidixic acid perturbation was analyzed using this format. As expected, fusions to promoters of LexA-controlled SOS-responsive genes dinG, dinB, uvrA, and ydjM were found to be upregulated in the presence of nalidixic acid. In addition, six fusions to genes not previously known to be induced by nalidixic acid were also reproducibly upregulated. The responses of two of these, fusions to oraA and yigN, were induced in a LexA-dependent manner by both nalidixic acid and mitomycin C, identifying these as members of the LexA regulon. The responses of the other four were neither induced by mitomycin C nor dependent on lexA function. Thus, the promoters of ycgH, intG, rihC, and a putative operon consisting of lpxA, lpxB, rnhB, and dnaE were not generally DNA damage responsive and represent a more specific response to nalidixic acid. These results demonstrate that cellular arrays of reporter gene fusions are an important alternative to DNA arrays for genomewide transcriptional analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.