Volumetric muscle loss (VML) injuries, by definition, exceed the endogenous repair capacity of skeletal muscle resulting in permanent structural and functional deficits. VML injuries present a significant burden for both civilian and military medicine. Despite progress, there is still considerable room for therapeutic improvement. In this regard, tissue-engineered constructs show promise for VML repair, as they provide an opportunity to introduce both scaffolding and cellular components. We have pioneered the development of a tissue-engineered muscle repair (TEMR) technology created by seeding muscle progenitor cells onto a porcine-derived bladder acellular matrix followed by cyclic stretch preconditioning before implantation. Our work to date has demonstrated significant functional repair (60-90% functional recovery) in progressively larger rodent models of VML injury following TEMR implantation. Notwithstanding this success, TEMR implantation in cylindrically shaped VML injuries in the tibialis anterior (TA) muscle was associated with more variable functional outcomes than has been observed in sheet-like muscles such as the latissimus dorsi. In fact, previous observations documented a dichotomy of responses following TEMR implantation in a rodent TA VML injury model; with an &61% functional improvement observed in fewer than half (46%) of TEMR-implanted animals at 12 weeks postinjury. This current study builds directly from those observations as we modified the geometry of both the VML injury and the TEMR construct to determine if improved matching of the implanted TEMR construct to the surgically created VML injury resulted in increased functional recovery posttreatment. Following these modifications, we observed a comparable degree of functional improvement in a larger proportion of animals (&67%) that was durable up to 24 weeks post-TEMR implantation. Moreover, in &25% of all TEMRimplanted animals, functional recovery was virtually complete (TEMR max responders), and furthermore, the functional recovery in all 67% of responding animals was accompanied by the presence of native-like muscle properties within the repaired TA muscle, including fiber cross-sectional area, fiber type, vascularization, and innervation. This study emphasizes the importance of tuning the application of tissue engineering technology platforms to the specific requirements of diverse VML injuries to improve functional outcomes.
Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.
Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational development of improved therapeutics for muscle repair and regeneration.
Volumetric muscle loss (VML) injuries are characterized by a degree of tissue loss that exceeds the endogenous regenerative capacity of muscle, resulting in permanent structural and functional deficits. Such injuries are a consequence of trauma, as well as a host of congenital and acquired diseases and disorders. Despite significant preclinical research with diverse biomaterials, as well as early clinical studies with implantation of decellularized extracellular matrices, there are still significant barriers to more complete restoration of muscle form and function following repair of VML injuries. In fact, identification of novel biomaterials with more advantageous regenerative profiles is a critical limitation to the development of improved therapeutics. As a first step in this direction, we evaluated a novel semisynthetic hyaluronic acid-based (HyA) hydrogel that embodies material features more favorable for robust muscle regeneration. This HyA-based hydrogel is composed of an acrylate-modified HyA (AcHyA) macromer, an AcHyA macromer conjugated with the bsp-RGD(15) peptide sequence to enhance cell adhesion, a high-molecular-weight heparin to sequester growth factors, and a matrix metalloproteinase-cleavable cross-linker to allow for cell-dependent remodeling. In a well-established, clinically relevant rat tibialis anterior VML injury model, we report observations of robust functional recovery, accompanied by volume reconstitution, muscle regeneration, and native-like vascularization following implantation of the HyA-based hydrogel at the site of injury. These findings have important implications for the development and clinical application of the improved biomaterials that will be required for stable and complete functional recovery from diverse VML injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.