This study investigated the effect of strength training, endurance training, and combined strength plus endurance training on fibre-type transitions, fibre cross-sectional area (CSA) and MHC isoform content of the vastus lateralis muscle. Forty volunteers (24 males and 16 females) were randomly assigned to one of four groups: control (C), endurance training (E), strength training (S), or concurrent strength and endurance training (SE). The S and E groups each trained three times a week for 12 weeks; the SE group performed the same S and E training on alternate days. The development of knee extensor muscle strength was S>SE>E ( P<0.05) and has been reported elsewhere. The reduction in knee extensor strength development in SE as compared to S corresponded to a 6% increase in MHCIIa content ( P<0.05) in SE at the expense of the faster MHCIId(x) isoform ( P<0.05), as determined by electrophoretic analyses; reductions in MHCIId/x content after S or E training were attenuated by comparison. Both S and SE induced three- to fourfold reductions ( P<0.05) in the proportion of type IIA/IID(X) hybrid fibres. S also induced fourfold increases in the proportion of type I/IIA hybrid fibres within both genders, and in a population of fibres expressing a type I/IID(X) hybrid phenotype within the male subjects. Type I/IIA hybrid fibres were not detected after SE. Both S and SE training paradigms induced similar increases (16-19%, P<0.05) in the CSA of type IIA fibres. In contrast, the increase in CSA of type I fibres was 2.9-fold greater ( P<0.05) in S as compared to SE after 12 weeks. We conclude that the interference of knee extensor strength development in SE versus S was related to greater fast-to-slow fibre-type transitions and attenuated hypertrophy of type I fibres. Data are given as mean (SEM) unless otherwise stated.
This study investigated the effect of manipulating the time to complete both the concentric (CON) and eccentric (ECC) muscle actions during resistance training on strength, skeletal muscle properties and cortisol in women. Twenty-eight women (mean +/- SE age = 24.3 +/- 1.1 year) with strength training experience completed three training sessions per week for 9 weeks. Two sets of four lower body exercises (leg press, parallel squat, knee extension and knee flexion) were completed using 6-8 RM intensity. The long CON (LC) group performed the CON action for 6 s and the ECC action for 2 s, while the long ECC (LE) group completed the CON and ECC phases for 2 and 6 s, respectively. Both groups experienced significant increases in leg press CON only, ECC only and combined ECC and CON maximal strength (1 RM). Immunohistochemical analyses demonstrated that both types I and IIA vastus lateralis fibre areas significantly increased following LC training while only type I fibre area increased following LE training. There was a decrease in MHCIId(x) with a concomitant increase in MHCIIa (P < 0.05) in both groups. Twenty-four hour urinary cortisol significantly increased after LC training only. It was concluded that LC resistance training was more effective than LE for increasing both types I and IIA fibre area and cortisol when time under tension and intensity of muscle actions were matched between the two modes of resistance training in young healthy women.
This study investigated the effect of creatine monohydrate (Cr) supplementation on performance and training volume in rowers. Twenty-two rowers trained with continuous and interval rowing and resistance training 4 and 2 days/week, respectively, for 6 weeks. Cr supplementation consisted of a 5-day load (0.3 g/kg(-1) x day(-1)) followed by a 5-week maintenance dose (0.03 g/kg(-1) x day(-1)) while training. Five days of Cr loading did not change body composition, repeated interval rowing performance, 2,000-m rowing times, or strength performance. Five additional weeks of training with a maintenance dose of Cr or placebo significantly improved body composition, VO2max, 2,000-m rowing times, repeated power interval performance, and strength to a similar extent in both groups. Subjects training with Cr did not perform more repetitions per set of strength exercise nor produce or maintain higher power outputs during repeated rowing sessions. Cr supplementation did not increase performance or training volume over a placebo condition in rowers that performed a combined high intensity rowing and strength program.
The purpose of this study was to describe the physiological requirements of a 2000 m simulated rowing performance, and to examine the relationship between this performance and various physical and physiological parameters. The measurements made on 22 female and 10 male rowers included a 2000 m simulated rowing performance, height, body mass, ventilatory threshold (VT), power output at VT (PO at VT), heart rate at VT, absolute maximal oxygen consumption (VO 2 max), power output at VO 2 max (PO at VO 2 max), and leg and bench press one repetition maximum (1 RM). A 2000 m simulated rowing test was performed at a mean intensity of 90.2% of VO 2 max, 77.0% of the PO at VO 2 max, and at 95.8% of HRmax. Significant correlation was found between the 2000 m rowing time and a competitor's height (r= -0.83), body mass (r = -0.69), VT (r = -0.81), PO at VT (r=-0.74), VO 2 max (r = -0.96), PO at VO 2 max (r = -0.83) and all strength variables (r = -0.56 to -0.79), respectively. Stepwise multiple regression indicated that the absolute VO 2 max was the best predictor of 2000 m simulated rowing performance (p 0.05). It was also found that males utilize strength to a greater degree than female to perform the 2000 m simulated rowing performance trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.