Considerable progress has been made in identifying the transcription factors involved in the early specification of the B-lymphocyte lineage. However, little is known about factors that control the transition of mature activated B cells to antibody-secreting plasma cells. Here we report that the transcription factor XBP-1 is required for the generation of plasma cells. XBP-1 transcripts were rapidly upregulated in vitro by stimuli that induce plasma-cell differentiation, and were found at high levels in plasma cells from rheumatoid synovium. When introduced into B-lineage cells, XBP-1 initiated plasma-cell differentiation. Mouse lymphoid chimaeras deficient in XBP-1 possessed normal numbers of activated B lymphocytes that proliferated, secreted cytokines and formed normal germinal centres. However, they secreted very little immunoglobulin of any isotype and failed to control infection with the B-cell-dependent polyoma virus, because plasma cells were markedly absent. XBP-1 is the only transcription factor known to be selectively and specifically required for the terminal differentiation of B lymphocytes to plasma cells.
To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA-seq and flow cytometry to T cells, B cells, monocytes and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis. Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics together revealed cell states expanded in RA synovia: THY1(CD90) + HLA-DRA hi sublining fibroblasts, IL1B + pro-inflammatory monocytes, ITGAX + TBX21 + autoimmune-associated B cells and PDCD1 + T peripheral helper (Tph) and T follicular helper (Tfh). We defined distinct subsets of CD8 + T cells characterized by a GZMK + , GZMB + and GNLY + phenotype. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1 + HLA-DRA hi fibroblasts, and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.
Bone erosion is a central feature of rheumatoid arthritis and is associated with disease severity and poor functional outcome. Erosion of periarticular cortical bone, the typical feature observed on plain radiographs in patients with rheumatoid arthritis, results from excessive local bone resorption and inadequate bone formation. The main triggers of articular bone erosion are synovitis, including the production of proinflammatory cytokines and receptor activator of nuclear factor κB ligand (RANKL), as well as antibodies directed against citrullinated proteins. Indeed, both cytokines and autoantibodies stimulate the differentiation of bone-resorbing osteoclasts, thereby stimulating local bone resorption. Although current antirheumatic therapy inhibits both bone erosion and inflammation, repair of existing bone lesions, albeit physiologically feasible, occurs rarely. Lack of repair is due, at least in part, to active suppression of bone formation by proinflammatory cytokines. This Review summarizes the substantial progress that has been made in understanding the pathophysiology of bone erosions and discusses the improvements in the diagnosis, monitoring and treatment of such lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.