The purpose of this research was to develop a tissueengineered intrasynovial flexor tendon construct with the use of an acellularized flexor tendon scaffold repopulated with intrasynovial tendon cells. New Zealand white rabbit intrasynovial flexor tendons were acellularized by the following methods: high concentration NaCl + SDS, Trypsin/EDTA, Trypsin/EDTA + Triton X-100, Triton X-100, Triton X-100 + SDS, and freezing at-70 °C followed by Trypsin/EDTA + Triton X-100. Epitenon and endotenon cells were also isolated from rabbit intrasynovial tendons and expanded in culture. Acellularized tendon scaffolds were then reseeded with these cells. A subset of epitenon and endotenon cells was labeled with green and red fluorescent markers, respectively, to further characterize the preferred location of their attachment. Optimal acellularization was achieved by freezing at-70 °C followed by Trypsin/EDTA + Triton X-100. After reseeding, light microscopy of tendon constructs showed attachment of both epitenon and endotenon to the tendon scaffolds, with endotenon cells more likely to be found in the core of the scaffold. An intrasynovial tendon construct was developed with the use of acellularized intrasynovial tendons repopulated with intrasynovial tenocytes. These constructs grossly resemble normal intrasynovial tendons, and cells were found both on the surface and the core of the construct histologically. This new construct represents an important first step in developing a viable tissue-engineered flexor tendon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.