Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface active dye, was added to the surfactant solution. The spreading progresses through a series of events. Marangoni stresses initiate the convective spreading of the drop. Simultaneously, surfactant escapes across the drop’s contact line within a second of deposition and causes a change in subphase surface tension outside the drop on the order of 1 mN/m. Convective spreading of the drop ends within 2–3 seconds of drop deposition, when a new interfacial tension balance is achieved. Surfactant escape depletes the drop of surfactant and the residual drop takes the form of a static lens of non-zero contact angle. On longer time scales, the surfactant dissolves into the subphase. The lens formed by the water in the deposited drop persists for as long as 3 minutes after the convective spreading process ends due to the long diffusional timescales associated with the underlying entangled polymer solution. The persistence of the lens suggests that the drop phase behaves as if it were immiscible with the subphase during this time period. Whereas surfactant escapes the spreading drop and advances on the subphase/vapor interface, hydrophilic dye molecules in the drop do not escape, but remain with the drop throughout the convective spreading. The quasi-immiscible nature of the spreading event suggests that the chemical properties of the surfactant and subphase are much less important than their physical properties, consistent with prior qualitative studies of spreading of different types of surfactants on entangled polymer subphases: the selection of surfactant for pulmonary delivery applications may be limited only by physical and toxicological considerations. Further, the escape of surfactant from individual drops may provide an additional spreading mechanism in the lung as hydrodynamic and/or surface pressure repulsions may drive individual droplets apart after deposition.
We investigated the phenomenon of incomplete wetting of a high energy liquid subphase by drops of pure amphiphilic molecules as well as drops of amphiphile solutions which are immiscible with the subphase. We show that amphiphiles escape across the contact line of the drop, move on the subphase/vapor interface and form a submonolayer or full monolayer external to the drop. If this monolayer is sufficiently dense, it can reduce the surface tension of the subphase, raise the contact angle of the drop and prevent the drop from fully wetting the subphase. This phenomenon is called autophobing and has been extensively studied on solid substrates. For the liquid subphase studied here, we measure the surface tensions of the three relevant interfaces before and after the drop is deposited. The measured surface tension external to the drop shows that amphiphiles can move across the contact line and form a monolayer outside of the drop. In some cases, at equilibrium, the monolayer is in a sufficiently packed state to create the nonwetting condition. In other cases, at equilibrium the monolayer density is insufficient to lower the surface tension enough to achieve the nonwetting condition. Unlike on solid substrates where the formation of the monolayer external to the drop is kinetically hindered, the amphiphiles can move rapidly across the liquid subphase by Marangoni driven surface transport and local equilbirum is achieved. However, because the amphiphile inventory and subphase area are limited, the achievement of autophobing on a liquid subphase depends not only on the instrinsic subphase/amphiphile interaction but also on the total amphiphile inventory and area of the liquid subphase.
The spreading dynamics of surfactant molecules on a thin fluid layer is of both fundamental and practical interest. A mathematical model formulated by Gaver and Grotberg [10] describing the spreading of a single layer of insoluble surfactant has become widely accepted, and several experiments on axisymmetric spreading have confirmed its predictions for both the height profile of the free surface and the spreading exponent (the radius of the circular area covered by surfactant grows as t 1/4 ). However, these prior experiments have primarily utilized surfactant quantities exceeding (sometimes far exceeding) a monolayer. In this paper, we report that this regime is characterized by a mismatch between the timescales of the experiment and model, and additionally find that the spatial distribution of surfactant molecules differs substantially from the model prediction. For experiments performed in the monolayer regime for which the model was developed, the surfactant layer is observed to have a spreading exponent of less than 1/10, far below the predicted value, and the surfactant distribution is also in disagreement. These findings suggest that the model is inadequate for describing the spreading of insoluble surfactants on thin fluid layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.