We identified loss-of-function mutations in ATP6V0A2, encoding the a2 subunit of the V-type H+ ATPase, in several families with autosomal recessive cutis laxa type II or wrinkly skin syndrome. The mutations result in abnormal glycosylation of serum proteins (CDG-II) and cause an impairment of Golgi trafficking in fibroblasts from affected individuals. These results indicate that the a2 subunit of the proton pump has an important role in Golgi function.
The conserved oligomeric Golgi (COG) complex is a hetero-octameric complex essential for normal glycosylation and intra-Golgi transport. An increasing number of congenital disorder of glycosylation type II (CDG-II) mutations are found in COG subunits indicating its importance in glycosylation. We report a new CDG-II patient harbouring a p.R729W missense mutation in COG4 combined with a submicroscopical deletion. The resulting downregulation of COG4 expression additionally affects expression or stability of other lobe A subunits. Despite this, full complex formation was maintained albeit to a lower extent as shown by glycerol gradient centrifugation. Moreover, our data indicate that subunits are present in a cytosolic pool and full complex formation assists tethering preceding membrane fusion. By extending this study to four other known COG-deficient patients, we now present the first comparative analysis on defects in transport, glycosylation and Golgi ultrastructure in these patients. The observed structural and biochemical abnormalities correlate with the severity of the mutation, with the COG4 mutant being the mildest. All together our results indicate that intact COG complexes are required to maintain Golgi dynamics and its associated functions. According to the current CDG nomenclature, this newly identified deficiency is designated CDG-IIj.
The hetero-octameric conserved oligomeric Golgi (COG) complex is essential for the structure/function of the Golgi apparatus through regulation of membrane trafficking. Here, we describe a patient with a mild form of a congenital disorder of glycosylation type II (CDG-II), which is caused by a homozygous nonsense mutation in the hCOG8 gene. This leads to a premature stop codon resulting in a truncated Cog8 subunit lacking the 76 C-terminal amino acids. Mass spectrometric analysis of the N- and O-glycan structures identified a mild sialylation deficiency. We showed that the molecular basis of this defect in N- and O-glycosylation is caused by the disruption of the Cog1-Cog8 interaction due to truncation. As a result, Cog1 deficiency accompanies the Cog8 deficiency, preventing assembly of the intact, stable complex and resulting in the appearance of smaller subcomplexes. Moreover, levels of beta1,4-galactosytransferase were significantly reduced. The defects in O-glycosylation could be fully restored by transfecting the patient's fibroblasts with full-length Cog8. The Cog8 defect described here represents a novel type of CDG-II, which we propose to name as CDG-IIh or CDG caused by Cog8 deficiency (CDG-II/Cog8).
Protein glycosylation is one of the major biosynthetic functions occurring in the endoplasmic reticulum and Golgi compartments. It requires an amazing number of enzymes, chaperones, lectins and transporters whose actions delicately secure the fidelity of glycan structures. Over the past 30 years, glycobiologists hammered that glycan structures are not mere decorative elements but serve crucial cellular functions. This becomes dramatically illustrated by a group of mostly severe, inherited human disorders named congenital disorders of glycosylation (CDG). To date, many types of CDG have been defined genetically and most of the time the defects impair the biosynthesis, transfer and remodeling of N-glycans. Recently, the identification of the several types of CDG caused by deficiencies in the conserved oligomeric Golgi (COG) complex, a complex involved in vesicular Golgi trafficking, expanded the field of CDG but also brought novel insights in glycosylation. The molecular mechanisms underlying the complex pathway of N-glycosylation in the Golgi are far from understood. The availability of COG-deficient CDG patients and patients' cells offered a new way to study how COG, and its different subunits, could influence the Golgi N-glycosylation machinery and localization. This review summarizes the recent findings on the implication of COG in Golgi glycosylation. It highlights the need for a dynamic, finely tuned balance between anterograde and retrograde trafficking for the correct localization of Golgi enzymes to assure the stepwise maturation of N-glycan chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.