[1] We performed three field campaigns in 2004, 2007, and 2010 at the southern margin of the Jakobshavn Isbrae, West Greenland, in order to infer flow velocities and their changes from photogrammetric time-lapse imagery with a temporal resolution of 20 min and a spatial spacing of about 30 m on the glacier surface. Area-wide analysis of more than 3000 three-dimensional trajectories at individual glacier positions allow for both the mapping of the grounding line and the detailed observation of flow variations during major calving events. From 2004 to 2010, the grounding line of Jakobshavn Isbrae retreated 3.5 AE 0.2 km. Considering previously published results, the grounding line retreat amounts to 6 km since 1985. The glacier has an ephemeral floating tongue that can establish during the readvance of the glacier front and break apart after large calving events. Observations of a major calving event show that an acceleration of flow velocities coincides with the onset of the break up during which flow velocities of up to 70 m/d can be reached. Moreover, large vertical displacements of the glacier front in the order of 15 m and lowering of 8 m at positions 500 m beyond the calving front were observed 2 days before the calving event.After the break up, the glacier slowly adjusts to the new boundary conditions within the next 4-5 days. Flow velocity variations caused by calving were detected up to 1 km upstream only which indicates that individual calving events have no immediate effect on the large-scale glacier dynamics.
[1] During the summer of 2004, the front area of the Jakobshavn Isbrae was monitored using a geodetic-photogrammetric survey with temporarily coincident precise observations of local ocean tides in the Disko Bay close to Ilulissat. The geodetic and photogrammetric observations were conducted at the southern margin of the glacier front. The largest observed horizontal flow velocities are in the central part of the front with values up to 45 m/d. This is a factor of 2 greater than the average velocities at the front area observed in the last century. Our new observations confirm previous estimates of an acceleration of glacier flow during the last decade. The photogrammetric survey provided flow trajectories for 4000 surface points with a time resolution of 30 min. These flow trajectories were used to compare the vertical motion of the glacier with the observed tides. The existence of a free-floating glacier tongue in 2004 was confirmed by these data. However, it occupied only a small belt, of at most a few 100 m width, in the central part of the glacier front. Horizontal motion did not appear to depend on the tidal phase, unlike some of the fast-moving ice streams of West Antarctica.
Abstract. This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.
Hemispheric image processing with the goal of solar radiation determination from ground-based fisheye images is a valuable tool for silvicultural analysis in forest ecosystems. The basic idea of the technique is taking a hemispheric crown image with a camera equipped with a 180°fisheye lens, segmenting the image in order to identify solar radiation relevant open sky areas, and then merging the open sky area with a radiation and sun-path model in order to compute the total annual or seasonal solar radiation for a plant. The results of hemispheric image processing can be used to quantitatively evaluate the growth chances of ground vegetation (e.g., tree regeneration) in forest ecosystems. This paper shows steps towards the operationalization and optimization of the method. As a prerequisite to support geometric handling and georeferencing of hemispheric images, an equi-angular camera model is shown to describe the imaging geometry of fisheye lenses. The model is extended by a set of additional parameters to handle deviations from the ideal model. In practical tests, a precision potential of 0.1 pixels could be obtained with off-the-shelf fisheye lenses. In addition, a method for handling the effects of chromatic aberration, which may amount to several pixels in fisheye lens systems, is discussed. The central topic of the paper is the development of a versatile method for segmenting hemispheric forest crown images. The method is based on linear segmentoriented classification on radial profiles. It combines global thresholding techniques with local image analysis to ensure a reliable segmentation in different types of forest under various cloud conditions. Sub-pixel classification is incorporated to optimize the accuracy of the method. The performance of the developed method is validated in a number of practical tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.