Invasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.
Tumor cells have the ability to exploit stromal cells to facilitate metastasis. By using malignant melanoma as a model, we show that the stroma adjacent to metastatic lesions is enriched in the known metastasis-promoting protein S100A4. S100A4 stimulates cancer cells to secrete paracrine factors, such as inflammatory cytokines IL8, CCL2 and SAA, which activate stromal cells (endothelial cells and monocytes) so that they acquire tumor-supportive properties. Our data establishes S100A4 as an inducer of a cytokine network enabling tumor cells to engage angiogenic and inflammatory stromal cells, which might contribute to pro-metastatic activity of S100A4.
The tumor microenvironment (TME) may influence both cancer progression and therapeutic response. In breast cancer, particularly in the aggressive triple‐negative/basal‐like subgroup, patient outcome is strongly associated with the tumor's inflammatory profile. Tumor‐associated macrophages (TAMs) are among the most abundant immune cells in the TME, shown to be linked to poor prognosis and therapeutic resistance. In this study, we investigated the effect of the metastasis‐ and inflammation‐associated microenvironmental factor S100A4 on breast cancer cells (BCCs) of different subtypes and explored their further interactions with myeloid cells. We demonstrated that extracellular S100A4 activates BCCs, particularly the basal‐like subtype, to elevate secretion of pro‐inflammatory cytokines. The secreted factors promoted conversion of monocytes to TAM‐like cells that exhibited protumorigenic activities: stimulated epithelial–mesenchymal transition, proliferation, chemoresistance, and motility in cancer cells. In conclusion, we have shown that extracellular S100A4 instigates a tumor‐supportive microenvironment, involving a network of cytokines and TAM‐like cells, which was particularly characteristic for basal‐like BCCs and potentiated their aggressive properties. The S100A4–BCC–TAM interaction cascade could be an important contributor to the aggressive behavior of this subtype and should be further explored for therapeutic targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.