Modern societies are exposed to a myriad of risks ranging from disease to natural hazards and technological disruptions. Exploring how the awareness of risk spreads and how it triggers a diffusion of coping strategies is prominent in the research agenda of various domains. It requires a deep understanding of how individuals perceive risks and communicate about the effectiveness of protective measures, highlighting learning and social interaction as the core mechanisms driving such processes. Methodological approaches that range from purely physics-based diffusion models to data-driven environmental methods rely on agentbased modeling to accommodate context-dependent learning and social interactions in a diffusion process. Mixing agent-based modeling with data-driven machine learning has become popularity. However, little attention has been paid to the role of intelligent learning in risk appraisal and protective decisions, whether used in an individual or a collective process. The differences between collective learning and individual learning have not been sufficiently explored in diffusion modeling in general and in agent-based models of socioenvironmental systems in particular. To address this research gap, we explored the implications of intelligent learning on the gradient from individual to collective learning, using an agent-based model enhanced by machine learning. Our simulation experiments showed that individual intelligent judgement about risks and the selection of coping strategies by groups with majority votes were outperformed by leader-based groups and even individuals deciding alone. Social interactions appeared essential for both individual learning and group learning. The choice of how to represent social learning in an agent-based model could be driven by existing cultural and social norms prevalent in a modeled society.
BackgroundMillions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed.MethodsWe present a spatial disease agent-based model (ABM) with agents’ behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior).ResultsWe run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of several macro metrics of interest: an epidemic curve, a risk perception curve, and a distribution of different types of coping strategies over time.ConclusionsOur results emphasize the importance of integrating behavioral aspects of decision making under risk into spatial disease ABMs using machine learning algorithms. This is especially relevant when studying cumulative impacts of behavioral changes and possible intervention strategies.
This paper introduces a spatially explicit agentbased simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V. cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse dumpsites plays a role in cholera diffusion. A number of experiments were conducted with the model for a case study in Kumasi, Ghana, based on an epidemic in 2005. Experiments confirm the importance of the hyperinfectious transmission route, however, they also reveal the importance of a representative spatial distribution of the income classes. Although the contribution of runoff from dumpsites can never be conclusively proven, the experiments show that modelling the epidemic via this mechanism is possible and improves the model results. Relevance of this research is that it shows the possibilities of agent-based modelling combined with pattern reproduction for cholera diffusion studies. The proposed model is simple in its setup but can be extended by adding additional elements such as human movement and change of behaviour of individuals based on disease awareness. Eventually, agent-based models will open opportunities to explore policy related research questions related to interventions to influence the diffusion process.
BackgroundIn Geographical Information Systems issues of scale are of an increasing interest in storing health data and using these in policy support. National and international policies on treating HIV (Human Immunodeficiency Virus) positive women in India are based on case counts at Voluntary Counseling and Testing Centers (VCTCs). In this study, carried out in the Indian state of Andhra Pradesh, these centers are located in subdistricts called mandals, serving for both registration and health facility policies. This study hypothesizes that people may move to a mandal different than their place of residence for being tested for reasons of stigma. Counts of a single mandal therefore may include cases from inside and outside a mandal. HIV counts were analyzed on the presence of outside cases and the most likely explanations for movement. Counts of women being tested on a practitioners' referral (REFs) and those directly walking-in at testing centers (DWs) were compared and with counts of pregnant women.ResultsAt the mandal level incidence among REFs is on the average higher than among DWs. For both groups incidence is higher in the South-Eastern coastal zones, being an area with a dense highway network and active port business. A pattern on the incidence maps was statistically confirmed by a cluster analysis. A spatial regression analysis to explain the differences in incidence among pregnant women and REFs shows a negative relation with the number of facilities and a positive relation with the number of roads in a mandal. Differences in incidence among pregnant women and DWs are explained by the same variables, and by a negative relation with the number of neighboring mandals. Based on the assumption that pregnant women are tested in their home mandal, this provides a clear indication that women move for testing as well as clues for explanations why.ConclusionsThe spatial analysis shows that women in India move towards a different mandal for getting tested on HIV. Given the scale of study and different types of movements involved, it is difficult to say where they move to and what the precise effect is on HIV registration. Better recording the addresses of tested women may help to relate HIV incidence to population present within a mandal. This in turn may lead to a better incidence count and therefore add to more reliable policy making, e.g. for locating or expanding health facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.