Eleven affected members of a large German-American family segregating recessively inherited, congenital, non-syndromic sensorineural hearing loss (SNHL) were found to be homozygous for the common 35delG mutation of GJB2, the gene encoding the gap junction protein Connexin 26. Surprisingly, four additional family members with bilateral profound SNHL carried only a single 35delG mutation. Previously, we demonstrated reduced expression of both GJB2 and GJB6 mRNA from the allele carried in trans with that bearing the 35delG mutation in these four persons. Using array comparative genome hybridization (arrayCGH), we have now identified on this allele a deletion of 131.4 kb whose proximal breakpoint lies more than 100 kb upstream of the transcriptional start sites of GJB2 and GJB6. This deletion, del(chr13:19,837,968,698), segregates as a completely penetrant DFNB1 allele in this family. It is not present in 528 persons with SNHL and monoallelic mutation of GJB2 or GJB6, nor have we identified any other candidate pathogenic copy number variation by arrayCGH in a subset of 10 such persons. Characterization of distant GJB2/GJB6 cis-regulatory regions evidenced by this allele may be required to find the 'missing' DFNB1 mutations that are believed to exist.
Unexplained infertility affects 2%-3% of reproductive-aged couples. One approach to identifying genes involved in infertility is to study subjects with this clinical phenotype and a de novo balanced chromosomal aberration (BCA). While BCAs may reduce fertility by production of unbalanced gametes, a chromosomal rearrangement may also disrupt or dysregulate genes important in fertility. One such subject, DGAP230, has severe oligozoospermia and 46,XY,t(20;22)(q13.3;q11.2). We identified exclusive overexpression of SYCP2 from the der(20) allele that is hypothesized to result from enhancer adoption. Modeling the dysregulation in budding yeast resulted in disrupted structural integrity of the synaptonemal complex, a common cause of defective spermatogenesis in mammals. Exome sequencing of infertile males revealed three heterozygous SYCP2 frameshift variants in additional subjects with cryptozoospermia and azoospermia. In sum, this investigation illustrates the power of precision cytogenetics for annotation of the infertile genome, suggests that these mechanisms should be considered as an alternative etiology to that of segregation of unbalanced gametes in infertile men harboring a BCA, and provides evidence of SYCP2-mediated male infertility in humans.
In a large kindred of German descent, we found a novel allele that segregates with deafness when present in trans with the 35delG allele of GJB2. Qualitative polymerase chain reaction-based allele-specific expression assays showed that expression of both GJB2 and GJB6 from the novel allele is dramatically reduced. This is the first evidence of a deafness-associated regulatory mutation of GJB2 and of potential coregulation of GJB2 and GJB6.
Chromosomal translocations, rearrangements involving the exchange of segments between chromosomes, were documented in humans in 1959. The first accurately reported clinical phenotype resulting from a translocation was that of Down syndrome. In a small percentage of Down syndrome cases, an extra 21q is provided by a Robertsonian translocation chromosome, either occurring de novo or inherited from a phenotypically normal parent with the translocation chromosome and a balanced genome of 45 chromosomes. Balanced translocations, including both Robertsonian and reciprocal translocations, are typically benign, but meiosis in germ cells with balanced translocations may result in meiotic arrest and subsequent infertility, or in unbalanced gametes, with attendant risks of miscarriage and unbalanced progeny. Most reciprocal translocations are unique. A few to several percent of translocations disrupt haploinsufficient genes or their regulatory regions and result in clinical phenotypes. Balanced translocations from patients with clinical phenotypes have been valuable in mapping disease genes and in illuminating cis-regulatory regions. Mapping of discordant mate pairs from long-insert, low-pass genome sequencing now permits efficient and cost-effective discovery and nucleotide-level resolution of rearrangement breakpoints, information that is absolutely necessary for interpreting the etiology of clinical phenotypes in patients with rearrangements. Pathogenic translocations and other balanced chromosomal rearrangements constitute a class of typically highly penetrant mutation that is cryptic to both clinical microarray and exome sequencing. A significant proportion of rearrangements include additional complexity that is not visible by conventional karyotype analysis. Some proportion of patients with negative findings on exome/genome sequencing and clinical microarray will be found to have etiologic balanced rearrangements only discoverable by genome sequencing with analysis pipelines optimized to recover rearrangement breakpoints.
Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25% for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology. As examples of intra- and inter-sibship familial locus heterogeneity, we present 10 consanguineous Pakistani families segregating hearing impairment due to homozygous variants in two different hearing impairment genes and a European-American pedigree in which hearing impairment is caused by four variants in three different genes. We have identified 41 additional pedigrees with syndromic and nonsyndromic hearing impairment for which a single previously reported hearing impairment gene has been identified but only segregates with the phenotype in a subset of affected pedigree members. We estimate that locus heterogeneity occurs in 15.3% (95% confidence interval: 11.9%, 19.9%) of the families in our collection. We demonstrate novel approaches to apply linkage analysis and homozygosity mapping (for autosomal recessive consanguineous pedigrees), which can be used to detect locus heterogeneity using either NGS or SNP array data. Results from linkage analysis and homozygosity mapping can also be used to group sibships or individuals most likely to be segregating the same causal variants and thereby increase the success rate of gene identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.