The 6-phospho-beta-galactosidase of Staphylococcus aureus, Lactococcus lactis and Lactobacillus casei and 6-phospho-beta-glucosidase B of Escherichia coli build a subfamily inside a greater enzyme family, named the glycosal hydrolase family 1, which, in addition, contains nine beta-glycosidases of different origins. Kinetic and immunological evidence is provided in this report which strengthens the relationship of the four 6-phospho-beta-glycosidases. It is shown that the 6-phospho-beta-galactosidases and 6-phospho-beta-glucosidase B are able to split aromatic beta-galactoside phosphates and beta-glucoside phosphates. The turnover numbers of hydrolysis of substrates with different epimerization at C-4 of the glycon vary up to 15-fold only. Two polyclonal antisera, one derived against the native 6-phospho-beta-galactosidase from S. aureus and the other derived against the 6-phospho-beta-glucosidase B, cross-reacted with both enzymes. Peptides of the proteins were separated by reverse phase HPLC. The cross-reacting peptides were sequenced and shown to be localized at almost the same position in the aligned primary structures of both enzymes. An insertion of nine amino acids near these antigenic domains is unique for the 6-phospho-beta-glycosidases and missing within the sequences of the beta-glycoside-specific members of the family. The lacG gene of a 6-phospho-beta-galactosidase negative S. aureus mutant was cloned into E. coli and sequenced. In the totally inactive mutant protein only the glycine at position 332 was changed to an arginine. This amino acid is part of the sequence insertion near the antigenic domain reacting with both antisera.(ABSTRACT TRUNCATED AT 250 WORDS)
We have developed a model for the accurate identification of M. chimaera and M. intracellulare by MALDI-TOF MS. This approach has the potential for routine use in microbiology laboratories, as the model itself can be easily implemented into the software of the currently available systems by MALDI-TOF MS manufacturers.
Bacteroides fragilis is a frequent anaerobic pathogen and can cause severe infections. Resistance to carbapenems, associated with the cfiA gene encoded carbapenemase, represents an emerging problem. To date, no rapid methods are available to detect and confirm this resistance mechanism in routine laboratories, and the missed recognition of carbapenemase-producing strains can lead to therapeutic failures. In this study we have investigated a whole MALDI-TOF MS-based workflow to detect carbapenemase-producing B. fragilis, using the largest set of B. fragilis clinical isolates ever tested. The presence of the cfiA gene was predicted by MALDI subtyping into Division I (cfiA-negative) or Division II (cfiA-positive). The carbapenemase activity in cfiA-positive strains was confirmed by a MALDI-TOF MS imipenem hydrolysis assay (MBT STAR-Carba, Bruker Daltonik, Germany), that was further used for a characterization of the strains in terms of cfiA expression level. The validity of MALDI subtyping was verified by PCR for the cfiA gene, while results of MALDI hydrolysis assay were compared to conventional methods for susceptibility testing and carbapenemase detection (Carba-NP and disk diffusion synergy test). A genetic analysis of the IS elements upstream cfiA was performed, for the evaluations regarding the expression level of cfiA. A total of 5300 B. fragilis isolates (406 from Bologna, Italy, and 4894 from Dortmund, Germany) were identified and subtyped by MALDI-TOF MS, yielding 41/406 (10.1%) strains from Bologna and 374/4894 (7.6%) from Dortmund to belong to Division II. Molecular verification by PCR for the cfiA gene on a subset of strains confirmed the MALDI typing results in all cases (sensitivity and specificity of 100%). MBT STAR-Carba assay detected the carbapenemase activity in all of the 70 cfiA-carrying strains tested. Moreover, it allowed distinct separation into slow (59) and fast (11) imipenem hydrolyzers corresponding to cfiA expression levels as well as to low or high MICs for carbapenems, respectively. Among the 11 cfiA-positive strains with high carbapenem MIC, only 7 harboured IS elements upstream the carbapenemase gene showing low expression level as well. The MALDI-TOF MS-based workflow was superior to the currently available phenotypic methods for carbapenemase detection as it proved to be more sensitive and accurate than Carba NP and disk diffusion synergy test. The whole MALDI-TOF MS-based workflow allows an accurate identification of B. fragilis clinical strains with reliable classification into Division I/II, and confirmation of the carbapenemase-production, together with estimation of carbapenemase activity, within less than 2 h. This may be of particular interest for early therapeutical decisions in life-threatening infections.
New information about the proteins of the phosphotransferase system (PTS) and of phosphoglycosidases of homofermentative lactic acid bacteria and related species is presented. Tertiary structures were elucidated from soluble PTS components. They help to understand regulatory processes and PTS function in lactic acid bacteria. A tertiary structure of a membrane-bound enzyme II is still not available, but expression of Gram-positive genes encoding enzymes II can be achieved in Escherichia coli and enables the development of effective isolation procedures which are necessary for crystallization experiments. Considerable progress was made in analysing the functions of structural genes which are in close vicinity of the genes encoding the sugar-specific PTS components, such as the genes encoding the tagatose-6-P pathway and the 6-phospho-beta-glycosidases. These phosphoglycosidases belong to a subfamily of the beta-glycosidase family I among about 300 different glycosidases. The active site nucleophile was recently identified to be Glu 358 in Agrobacterium beta-glucosidase. This corresponds to Glu 375 in staphylococcal and lactococcal 6-phospho-beta-galactosidase. This enzyme is inactivated by mutating Glu 375 to Gln. Diffracting crystals of the lactococcal 6-P-beta-galactosidase allow the elucidation of its tertiary structure which helps to derive the structures for the entire glycosidase family 1. In addition, a fusion protein with 6-phospho-beta-galactosidase and staphylococcal protein A was constructed.
The lacG gene encoding the 6-phospho-beta-galactosidase (E.C.3.2.1.85) of Staphylococcus aureus was fused to the protein A gene in the plasmid pRIT2T. Escherichia coli cells containing this plasmid produce a fusion protein with both IgG binding and 6-phospho-beta-galactosidase activities after heat induction. The recombinant gene was overexpressed and the hybrid protein was purified to homogeneity in high yield. The chimeric protein was shown to have almost identical enzymatic characteristics to pure 6-phospho-beta-galactosidase. This result leads to the conclusion that a free N-terminus of the 6-phospho-beta-galactosidase is not required for biological activity. The hybrid protein of protein A and 6-phospho-beta-galactosidase was used as an enzyme conjugate in enzyme-linked immunosorbent assays (ELISA). The experiments presented demonstrate that the 6-phospho-beta-galactosidase is a suitable fusion partner in various diagnostic applications where an unique biological activity is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.