Several strategies against Alzheimer disease (AD) are directed to target Aβ-peptides. The ability of transthyretin (TTR) to bind Aβ-peptides and the positive effect exerted by some TTR stabilizers for modulating the TTR-Aβ interaction have been previously studied. Herein, key structural features of the interaction between TTR and the Aβ(12-28) peptide (3), the essential recognition element of Aβ, have been unravelled by STD-NMR spectroscopy methods in solution. Molecular aspects related to the role of the TTR stabilizer iododiflunisal (IDIF, 5) on the TTR-Aβ complex have been also examined. The NMR results, assisted by molecular modeling protocols, have provided a structural model for the TTR-Aβ interaction, as well as for the ternary complex formed in the presence of IDIF. This basic structural information could be relevant for providing light on the mechanisms involved in the ameliorating effects of AD symptoms observed in AD/TTR animal models after IDIF treatment and eventually for designing new molecules toward AD therapeutic drugs.
Transthyretin (TTR), an homotetrameric protein mainly synthesized by the liver and the choroid plexus, and secreted into the blood and the cerebrospinal fluid, respectively, has been specially acknowledged for its functions as a transporter protein of thyroxine and retinol (the latter through binding to the retinol-binding protein), in these fluids. Still, this protein has managed to stay in the spotlight as it has been assigned new and varied functions. In this review, we cover knowledge on novel TTR functions and the cellular pathways involved, spanning from neuroprotection to vascular events, while emphasizing its involvement in Alzheimer’s disease (AD). We describe details of TTR as an amyloid binding protein and discuss its interaction with the amyloid Aβ peptides, and the proposed mechanisms underlying TTR neuroprotection in AD. We also present the importance of translating advances in the knowledge of the TTR neuroprotective role into drug discovery strategies focused on TTR as a new target in AD therapeutics.
Transthyretin
(TTR) modulates the deposition, processing, and toxicity
of Abeta (Aβ) peptides. We have shown that this effect is enhanced
in mice by treatment with small molecules such as iododiflunisal (IDIF,
4
), a good TTR stabilizer. Here, we describe the thermodynamics
of the formation of binary and ternary complexes among TTR, Aβ(1–42)
peptide, and TTR stabilizers using isothermal titration calorimetry
(ITC). A TTR/Aβ(1–42) (1:1)
complex with a dissociation constant of
K
d
= 0.94 μM is formed; with IDIF
(
4
), this constant improves up to
K
d
= 0.32 μM, indicating
the presence of a ternary complex TTR/IDIF/Aβ(1–42).
However, with the drugs diflunisal (
1
) or Tafamidis (
2
), an analogous chaperoning effect could not be observed.
Similar phenomena could be recorded with the shorter peptide Aβ(12–28)
(
7
). We propose the design of a simple assay system for
the search of other chaperones that behave like IDIF and may become
potential candidate drugs for Alzheimer’s disease (AD).
The amyloidogenic protein transthyretin (TTR) is thought to aggregate into amyloid fibrils by tetramer dissociation which can be inhibited by a number of small molecule compounds. Our analysis of a series of crystallographic protein-inhibitor complexes has shown no clear correlation between the observed molecular interactions and the in vitro activity of the inhibitors. From this analysis, it emerged that halogen bonding (XB) could be mediating some key interactions. Analysis of the halogenated derivatives of two well-known TTR inhibitors has shown that while flufenamic acid affinity for TTR was unchanged by halogenation, diflunisal gradually improves binding up to 1 order of magnitude after iodination through interactions that can be interpreted as a suboptimal XB (carbonyl Thr106: I...O distance 3.96-4.05 Å; C-I...O angle 152-156°) or as rather optimized van der Waals contacts or as a mixture of both. These results illustrate the potential of halogenation strategies in designing and optimizing TTR fibrillogenesis inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.