Modification of dissolved gas content by acoustic droplet vaporization (ADV) has been proposed for several therapeutic applications. Reducing dissolved oxygen (DO) during reperfusion of ischemic tissue during coronary interventions could inhibit reactive oxygen species production and rescue myocardium. The objective of this study was to determine whether intravascular ultrasound (IVUS) can trigger ADV and reduce DO. Perfluoropentane emulsions were created using high-speed shaking and microfluidic manufacturing. High-speed shaking resulted in a polydisperse droplet distribution ranging from less than 1 micron to greater than 16 microns in diameter. Microfluidic manufacturing produced a narrower size range of droplets with diameters between 8.0 microns and 9.6 microns. The DO content of the fluids was measured before and after ADV triggered by IVUS exposure. Duplex B-mode and passive cavitation imaging was performed to assess nucleation of ADV. An increase in echogenicity indicative of ADV was observed after exposure with a clinical IVUS system. In a flow phantom, a 20% decrease in DO was measured distal to the IVUS transducer when droplets, formed via high-speed shaking, were infused. In a static fluid system, the DO content was reduced by 11% when droplets manufactured with a microfluidic chip were exposed to IVUS. These results demonstrate that a reduction of DO by ADV is feasible using a clinical IVUS system. Future studies will assess the potential therapeutic efficacy of IVUS-nucleated ADV and methods to increase the magnitude of DO scavenging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.