Most sporadic colorectal cancers are initiated by activating Wnt pathway mutations, characterized by the stabilization of beta-catenin and constitutive transcription by the beta-catenin/T cell factor-4 (Tcf-4) complex. EphB guidance receptors are Tcf4 target genes that control intestinal epithelial architecture through repulsive interactions with Ephrin-B ligands. Here we show that, although Wnt signalling remains constitutively active, most human colorectal cancers lose expression of EphB at the adenoma-carcinoma transition. Loss of EphB expression strongly correlates with degree of malignancy. Furthermore, reduction of EphB activity accelerates tumorigenesis in the colon and rectum of Apc(Min/+) mice, and results in the formation of aggressive adenocarcinomas. Our data demonstrate that loss of EphB expression represents a critical step in colorectal cancer progression.
The Netherlands launched a nationwide implementation study on non-invasive prenatal testing (NIPT) as a first-tier test offered to all pregnant women. This started on April 1, 2017 as the TRIDENT-2 study, licensed by the Dutch Ministry of Health. In the first year, NIPT was performed in 73,239 pregnancies (42% of all pregnancies), 7,239 (4%) chose first-trimester combined testing, and 54% did not participate. The number of trisomies 21 (239, 0.33%), 18 (49, 0.07%), and 13 (55, 0.08%) found in this study is comparable to earlier studies, but the Positive Predictive Values (PPV)-96% for trisomy 21, 98% for trisomy 18, and 53% for trisomy 13-were higher than expected. Findings other than trisomy 21, 18, or 13 were reported on request of the pregnant women; 78% of women chose to have these reported. The number of additional findings was 207 (0.36%); these included other trisomies (101, 0.18%, PPV 6%, many of the remaining 94% of cases are likely confined placental mosaics and possibly clinically significant), structural chromosomal aberrations (95, 0.16%, PPV 32%,) and complex abnormal profiles indicative of maternal malignancies (11, 0.02%, PPV 64%). The implementation of genome-wide NIPT is under debate because the benefits of detecting other fetal chromosomal aberrations must be balanced against the risks of discordant positives, parental anxiety, and a potential increase in (invasive) diagnostic procedures. Our first-year data, including clinical data and laboratory follow-up data, will fuel this debate. Furthermore, we describe how NIPT can successfully be embedded into a national screening program with a single chain for prenatal care including counseling, testing, and follow-up.
ObjectiveTo evaluate the clinical impact of nationwide implementation of genome‐wide non‐invasive prenatal testing (NIPT) in pregnancies at increased risk for fetal trisomies 21, 18 and 13 (TRIDENT study).MethodWomen with elevated risk based on first trimester combined testing (FCT ≥ 1:200) or medical history, not advanced maternal age alone, were offered NIPT as contingent screening test, performed by Dutch University Medical laboratories. We analyzed uptake, test performance, redraw/failure rate, turn‐around time and pregnancy outcome.ResultsBetween 1 April and 1 September 2014, 1413/23 232 (6%) women received a high‐risk FCT result. Of these, 1211 (85.7%) chose NIPT. One hundred seventy‐nine women had NIPT based on medical history. In total, 1386/1390 (99.7%) women received a result, 6 (0.4%) after redraw. Mean turn‐around time was 14 days. Follow‐up was available in 1376 (99.0%) pregnancies. NIPT correctly predicted 37/38 (97.4%) trisomies 21, 18 or 13 (29/30, 4/4 and 4/4 respectively); 5/1376 (0.4%) cases proved to be false positives: trisomies 21 (n = 2), 18 (n = 1) and 13 (n = 2). Estimated reduction in invasive testing was 62%.ConclusionIntroduction of NIPT in the Dutch National healthcare‐funded Prenatal Screening Program resulted in high uptake and a vast reduction of invasive testing. Our study supports offering NIPT to pregnant women at increased risk for fetal trisomy. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have chemopreventive potential against colorectal carcinomas (CRCs). Inhibition of cyclooxygenase (COX)-2 underlies part of this effect, although COX-2-independent mechanisms may also exist. Nonsteroidal antiinflammatory drugs appear to inhibit the initial stages of the adenoma -carcinoma sequence, suggesting a link to the APC/b-catenin/ TCF pathway (Wnt-signalling pathway). Therefore, the effect of the NSAID sulindac on nuclear (nonphosphorylated) b-catenin and b-catenin/TCF-mediated transcription was investigated. Nuclear b-catenin expression was assessed in pretreatment colorectal adenomas and in adenomas after treatment with sulindac from five patients with familial adenomatous polyposis (FAP). Also, the effect of sulindac sulphide on b-catenin/TCF-mediated transcription was studied. Adenomas of FAP patients collected after treatment with sulindac for up to 6 months showed less nuclear b-catenin expression compared to pretreatment adenomas of the same patients. Sulindac sulphide abrogated b-catenin/TCF-mediated transcription in the CRC cell lines DLD1 and SW480, and decreased the levels of nonphosphorylated b-catenin. As a result, the protein levels of the positively regulated TCF targets Met and cyclin D1 were downregulated after sulindac treatment. This study provides in vivo and in vitro evidence that nuclear b-catenin localisation and b-catenin/TCF-regulated transcription of target genes can be inhibited by sulindac. The inhibition of Wnt-signalling provides an explanation for the COX-2-independent mechanism of chemoprevention by NSAIDs. . Also, in patients with familial adenomatous polyposis (FAP), an autosomal dominantly inherited disorder characterised by the development of numerous colorectal adenomas at a young age, the NSAIDs sulindac and indomethacin can cause regression of adenomas (Giardiello et al, 1993;Nugent et al, 1993;Spagnesi et al, 1994;Hirota et al, 1996;Winde et al, 1997;Picariello et al, 1998). The chemopreventive effect of NSAIDs appears mediated by the induction of apoptosis and cell cycle arrest (Pasricha et al, 1995;DuBois and Smalley, 1996;Piazza et al, 1997;Keller et al, 1999;Shiff and Rigas, 1999). The molecular mechanisms underlying these biological effects are not completely understood. Nonsteroidal anti-inflammatory drugs inhibit the enzymatic activity of cyclooxygenase (COX)-1 and -2, enzymes that convert arachidonic acid into prostaglandins (Shiff and Rigas, 1999). However, COX-independent mechanisms may also play a role, since NSAIDs inhibit the growth of colon cancer cell lines lacking COX-2 expression (Hanif et al, 1996;Zhang et al, 1999;Smith et al, 2000).Oncogenic activation of the Wnt-signalling pathway by mutations in Adenomatous polyposis coli (APC) or b-catenin, which results in the accumulation and nuclear translocation of b-catenin and in b-catenin/TCF4-regulated transcription of TCF target genes, is mandatory for the initial neoplastic transformation of intestinal epithelium (reviewed in Kinzler and Vogelstein, 1996...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.