Contrary to the Gricean maxims of quantity (Grice, in: Cole, Morgan (eds) Syntax and semantics: speech acts, vol III, pp 41-58, Academic Press, New York, 1975), it has been repeatedly shown that speakers often include redundant information in their utterances (over-specifications). Previous research on referential communication has long debated whether this redundancy is the result of speaker-internal or addressee-oriented processes, while it is also unclear whether referential redundancy hinders or facilitates comprehension. We present an information-theoretic explanation for the use of overspecification in visually-situated communication, which quantifies the amount of uncertainty regarding the referent as entropy (Shannon in Bell Syst Tech J 5:10, https://doi.org/10.1002/j. 1538-7305.1948. tb01338.x, 1948). Examining both the comprehension and production of over-specifications, we present evidence that (a) listeners' processing is facilitated by the use of redundancy as well as by a greater reduction of uncertainty early on in the utterance, and (b) that at least for some speakers, listeners' processing concerns influence their encoding of over-specifications: Speakers were more likely to use redundant adjectives when these adjectives reduced entropy to a higher degree than adjectives necessary for target identification.
A controversial issue in psycholinguistics is the degree to which speakers employ audience design during language production. Hypothesising that a consideration of the listener's needs is particularly relevant when the listener is under cognitive load, we had speakers describe objects for a listener performing an easy or a difficult simulated driving task. We predicted that speakers would introduce more redundancy in their descriptions in the difficult driving task, thereby accommodating the listener's reduced cognitive capacity. The results showed that speakers did not adapt their descriptions to a change in the listener's cognitive load. However, speakers who had experienced the driving task themselves before and who were presented with the difficult driving task first were more redundant than other speakers. These findings may suggest that speakers only consider the listener's needs in the presence of strong enough cues, and do not update their beliefs about these needs during the task.
In referential communication, Grice's Maxim of Quantity is thought to imply that utterances conveying unnecessary information should incur comprehension difficulties. There is, however, considerable evidence that speakers frequently encode redundant information in their referring expressions, raising the question as to whether such overspecifications hinder listeners' processing. Evidence from previous work is inconclusive, and mostly comes from offline studies. In this article, we present two eventrelated potential (ERP) experiments, investigating the real-time comprehension of referring expressions that contain redundant adjectives in complex visual contexts. Our findings provide support for both Gricean and bounded-rational accounts. We argue that these seemingly incompatible results can be reconciled if common ground is taken into account. We propose a bounded-rational account of overspecification, according to which even redundant words can be beneficial to comprehension to the extent that they facilitate the reduction of listeners' uncertainty regarding the target referent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.