<p>The Ireviken Biogeochemical Event (IBE) consists of the Ireviken Extinction Event (IEE) and is superseded by the Ireviken positive d13Ccarb Excursion (ICIE). During the Ireviken Extinction Event 80% of the conodont species and 50% of the trilobite species went extinct and Acritarchs, chitinozoans, graptolites, corals, and brachiopods communities were severely affected as well. Currently there are no indications that the Ireviken Biogeochemical event can be linked to a LIP or a bolide impact which are the usual triggers for most known biogeochemical events. The IBE has been tentatively linked to SEDEX brine expulsion, however convincing high-resolution data supporting the SEDEX brine expulsion theory was lacking.</p><p>The Altajme core from Gotland Sweden covers the entirety of the Ireviken Biogeochemical Event and using an ITRAX XRF core scanner&#160; we were able to create a new dataset with a 1cm(~150-400 yr.) resolution. This dataset enables us to shed new light on the origin of the IBE and serves as a template for a cyclostratigraphic age model (using the detrital proxies of Ti and Al) which puts the IBE within a precise temporal framework.</p><p>The occurrence of peak values of Nb, Mn, Cu, Ba, Pb, Zn, As, Ag in the Altajme core follows the temporal sequence of element peaks which is characteristic for the cooling of a hydrothermal system. A Pb:Zn ratio of >1 and low Cu/(Zn+Pb) ratio categorises the hydrothermal system as being the sedimentary exhalative (SEDEX) brine expulsion type system. Through these results we can undoubtedly link the Ireviken Biogeochemical Event to a SEDEX brine expulsion. Numerous SEDEX style ore deposits of Proterozoic to Cenozoic age are known, but it has been difficult to connect them with similarly aged biogeochemical events. &#160;This study demonstrates that through extremely high resolution XRF/element data we can observe the far-field signature of a SEDEX brine expulsion and thus showing us the way to recognize more biogeochemical events triggered by SEDEX brine expulsions.&#160;</p>
<p>The cumulative work of geoscientists over the past decades has shown that the Silurian Period which was once thought as warm and climatically stable time interval is in fact punctuated by numerous paleoenvironmental perturbations or events. These Silurian events follow a similar pattern where a minor extinction event precedes a substantial carbon isotope excursion. Many theories have been brought forward to explain these events ranging from glaciations, to changes in precipitations patterns, ocean currents and ocean anoxia. Constraints on the duration and timing of these extinction events and subsequent positive carbon isotope excursions are weak, which hampers a full understanding of the processes at play.</p><p>The data from the Altajme core from Gotland, Sweden provides us with a unique opportunity to look at two of these climatic perturbations during the Silurian. The Altajme core spans both the Sheinwoodian Ireviken event and the Homerian Mulde event. The Altajme core dataset includes a litholog, high-resolution &#948;13C data, correlated bentonites with U-Pb dates and a high-resolution XRF core scan: important data required for and integrated stratigraphic study. The U-Pb-dated bentonites give us age constraints. The &#948;13C data in combination with the high resolution XRF scan gives us insights into the changes in the ocean before during and after the events, while the XRF is also used to build cyclostratigraphic age constraints for the events and for the whole core. This stratigraphic study will provide us with a palaeoclimatological insights to explain these two events and provide us with a cyclostratigraphy based age model for the Middle Silurian.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.