This study examined regional cortical activations and cortico-cortical connectivity in a group of 20 high-functioning patients with schizophrenia and 20 healthy controls matched for age and sex during a 0- and a 2-back working memory (WM) task. An earlier study comparing schizophrenia patients with education level-matched healthy controls revealed less "optimally" organized network during the 2-back task, whereas a second study with healthy volunteers had suggested that the degree of cortical organization may be inversely proportional to educational level (less optimal functional connectivity in better educated individuals interpreted as the result of higher efficiency). In the present study, both groups succeeded in the 2-back WM task although healthy individuals had generally attained a higher level of education. First absolute power spectrum of the different frequency bands corresponding to the electrodes of each lobe was calculated. Then the mean values of coherence were calculated as an index of the average synchronization to construct graphs in order to characterize local and large scale topological patterns of cortico-cortical connectivity. The power spectra analyses showed signs of hypofrontality in schizophrenics with an asymmetry. Additionally, differences between the groups with greater changes during WM in healthy individuals were visible in all lobes more on the left side. The graph parameter results indicated decreased small-world architecture i.e. less optimal cortico-cortical functional organization in patients as compared to controls. These findings are consistent with the notion of aberrant neural organization in schizophrenics which is nevertheless sufficient in supporting adequate task performance.
Among the various frameworks in which electroencephalographic (EEG) signal synchronization has been traditionally formulated, the most widely studied and used is the coherence that is entirely based on frequency analysis. However, at present time it is possible to capture information about the temporal profile of coherence, which is particularly helpful in studying non-stationary time-varying brain dynamics, like the wavelet coherence (WC). In this paper we propose a new approach of studying brain synchronization dynamics by extending the use of WC to include certain statistically significant (in terms of signal coherence) time segments, to study and characterize any disturbances present in the functional connectivity network of schizophrenia patients. Graph theoretical measures and visualization provide the tools to study the "disconnection syndrome" as proposed for schizophrenia. Specifically, we analyzed multichannel EEG data from twenty stabilized patients with schizophrenia and controls in an experiment of working memory (WM) using the gamma band (i.e., the EEG frequency of ca. 40 Hz), which is activated during the connecting activity (i.e., the "binding" of the neurons). The results are in accordance with the disturbance of connections between the neurons giving additional information related to the localization of most prominent disconnection.
In the present study, we studied the structural changes of the brain functional network in a group of schizophrenic (SCHZ) patients during a 2-back working memory task. Cortical signals were obtained from scalp EEG signals through the high-resolution EEG technique, which relies on realistic head models and linear inverse solutions. Functional networks were estimated by computing the spectral coherence--i.e. a measure of synchronization in the frequency domain--between the time series of all the available cortical sources. To analyze those cortical networks we followed a theoretical graph approach by computing the network density as the total number of links and the node degree as the number of links of each cortical source. The major result suggest that in the Alpha2 frequency band (11-13 Hz) the cortical functional networks of the SCHZ patients present the largest differences when compared with those of a group of control (CTRL) subjects. In particular, the structure of the SCHZ network altered radically during the memory task, as the number of links that were different from the REST condition increased sensibly with respect to the CTRL network. In addition, a compensatory mechanism was found in the SCHZ patients during the correct performance of the memory task where the node degree showed a frontal asymmetry with higher activation of the left frontal lobe--i.e. higher number of connections--in the Alpha2 frequency band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.