Hip fractures in older adults, which often lead to lasting impairments and an increased risk of mortality, are a major public health concern. Hip fracture risk is multi-factorial, affected by the risk of falling, the load acting on the femur, and the load the femur can withstand. This study investigates the influence of impact direction on hip fracture risk and hip protector efficacy. We simulated falls for 4 subjects, in 7 different impact directions (15° and 30° anterior, lateral, and 15°, 30°, 60°, and 90° posterior) at two different impact velocities (2.1 and 3.1 m/s), all with and without hip protector, using previously validated biofidelic finite element models. We found the highest number of fractures and highest fragility ratios in lateral and 15° posterior impacts. The hip protector attenuated femur forces by 23–49 % for slim subjects under impact directions that resulted in fractures (30° anterior to 30° posterior). The hip protector prevented all fractures (6/6) for 2.1 m/s impacts, but only 10% of fractures for 3.1 m/s impacts. Our results provide evidence that, regarding hip fracture risk, posterior-lateral impacts are as dangerous as lateral impacts, and they support the efficacy of soft-shell hip protectors for anterior- and posterior-lateral impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.