IntroductionIndividuals with idiopathic rapid eye movement sleep behavior disorder (iRBD) are at high risk for a clinical diagnosis of an α‐synucleinopathy (aSN). They could serve as a key population for disease‐modifying trials. Abnormal dopamine transporter (DAT) imaging is a strong candidate biomarker for risk of aSN diagnosis in iRBD. Our primary objective was to identify a quantitative measure of DAT imaging that predicts diagnosis of clinically‐defined aSN in iRBD.MethodsThe sample included individuals with iRBD, early Parkinson’s Disease (PD), and healthy controls (HC) enrolled in the Parkinson Progression Marker Initiative, a longitudinal, observational, international, multicenter study. The iRBD cohort was enriched with individuals with abnormal DAT binding at baseline. Motor and nonmotor measures were compared across groups. DAT specific binding ratios (SBR) were used to calculate the percent of expected DAT binding for age and sex using normative data from HCs. Receiver operative characteristic analyses identified a baseline DAT binding cutoff that distinguishes iRBD participants diagnosed with an aSN in follow‐up versus those not diagnosed.ResultsThe sample included 38 with iRBD, 205 with PD, and 92 HC who underwent DAT‐SPECT at baseline. Over 4.7 years of mean follow‐up, 14 (36.84%) with iRBD were clinically diagnosed with aSN. Risk of aSN diagnosis was significantly elevated among those with baseline putamen SBR ≤ 48% of that expected for age and sex, relative to those above this cutoff (hazard ratio = 17.8 [95%CI: 3.79–83.3], P = 0.0003).ConclusionWe demonstrate the utility of DAT SBR to identify individuals with iRBD with increased short‐term risk of an aSN diagnosis.
A challenge for circulating tumor cell (CTC)-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1) their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2) their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers.
S. aureus bacteremia (SAB) is a common condition with high rates of morbidity and mortality. Current methods used to diagnose SAB take at least a day, and often longer. Patients with suspected bacteremia must therefore be empirically treated, often unnecessarily, while assay results are pending. In this proof-of-concept study, we describe an inexpensive assay that detects SAB via the detection of micrococcal nuclease (an enzyme secreted by S. aureus) in patient plasma samples in less than three hours. In total, 17 patient plasma samples from culture-confirmed S. aureus bacteremic individuals were tested. 16 of these yielded greater nuclease assay signals than samples from uninfected controls or individuals with non-S. aureus bacteremia. These results suggest that a nuclease-detecting assay may enable the rapid and inexpensive diagnosis of SAB, which is expected to substantially reduce the mortality and morbidity that result from this condition.
Background: Investigation of sex-related motor and non-motor differences and biological markers in Parkinson’s disease (PD) may improve precision medicine approach. Objective: To examine sex-related longitudinal changes in motor and non-motor features and biologic biomarkers in early PD. Methods: We compared 5-year longitudinal changes in de novo, untreated PD men and women (at baseline N = 423; 65.5%male) of the Parkinson’s Progression Markers Initiative (PPMI), assessing motor and non-motor manifestations of disease; and biologic measures in cerebrospinal fluid (CSF) and dopamine transporter deficit on DaTscanTM uptake. Results: Men experienced greater longitudinal decline in self-reported motor (p < 0.001) and non-motor (p = 0.009) aspects of experiences of daily living, such that men had a yearly increase in MDS-UPDRS part II by a multiplicative factor of 1.27 compared to women at 0.7, while men had a yearly increase in MDS-UPDRS part I by a multiplicative factor of 0.98, compared to women at 0.67. Compared to women, men had more longitudinal progression in clinician-assessed motor features in the ON medication state (p = 0.010) and required higher dopaminergic medication dosages over time (p = 0.014). Time to reach specific disease milestones and longitudinal changes in CSF biomarkers and DaTscanTM uptake were not different by sex. Conclusion: Men showed higher self-assessed motor and non-motor burden of disease, with possible contributions from suboptimal dopaminergic therapeutic response in men. However, motor features of disease evaluated with clinician-based scales in the OFF medication state, as well as biological biomarkers do not show specific sex-related progression patterns.
Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.