Various implementations of two-dimensional high-performance liquid chromatography are increasingly being developed and applied to the analysis of complex materials, including those encountered in the analysis of foods, beverages, and nutraceuticals. Previously, we introduced the concept of selective comprehensive two-dimensional liquid chromatography (sLC × LC) as a hybrid between the more conventional, but extreme opposite sampling modes of heartcutting (LC-LC) and fully comprehensive (LC × LC) 2D separation. The sLC × LC approach breaks the link between first dimension ((1)D) sampling time and second dimension ((2)D) analysis time that is faced in LC × LC and allows very rapid (as low as 1 s) sampling of highly efficient (1)D separations, while at the same time allowing efficient (2)D separations on the timescale of tens of seconds. In this paper, we improve upon our previous sLC × LC work by demonstrating the ability to perform the processes of (1)D sampling and (2)D separation in parallel. This significantly improves the flexibility of the technique and allows targeted analysis of analytes that elute close together in time in the (1)D separation. To demonstrate the value of this added capability, we have developed a sLC × LC method using multi-wavelength ultraviolet absorbance detection for the quantitative analysis of six target furanocoumarin compounds in extracts of celery, parsley, and parsnips. We show that (2)D separations of (1)D effluent containing the target compounds of interest reveal the presence of unanticipated interferent peaks that would otherwise compromise the quantitative accuracy of the method. We also demonstrate the application of the chemometric method iterative key set factor analysis with alternating least-squares to sLC × LC to mathematically resolve target compounds that are only slightly separated chromatographically but not sufficiently resolved for accurate quantitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.