The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.
A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety profile of other tested FAAH inhibitors, that off-target activities of BIA 10-2474 may have played a role. Here, we use activity-based proteomic methods to determine the protein interaction landscape of BIA 10-2474 in human cells and tissues. This analysis revealed that the drug inhibits several lipases that are not targeted by PF04457845, a highly selective and clinically tested FAAH inhibitor. BIA 10-2474, but not PF04457845, produced substantial alterations in lipid networks in human cortical neurons, suggesting that promiscuous lipase inhibitors have the potential to cause metabolic dysregulation in the nervous system.
Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically.
In recent years, lipids have come to the foreground as signaling mediators in the central nervous system (CNS) 1,2 . While classical neurotransmitters are stored in synaptic vesicles and released on fusion with the plasma membrane of neurons, due to their lipophilic nature, lipids readily diffuse through membranes and are not stored in vesicles. It is, therefore, generally accepted that signaling lipids are produced 'on demand' and are rapidly metabolized to terminate their biological action 3 . In particular, NAEs, including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA) and the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA) have emerged as key lipid signaling molecules. Genetic deletion or pharmacological inhibition of the main NAE hydrolytic enzyme, fatty acid amide hydrolase (FAAH), revealed elevated anandamide, PEA and OEA levels in brain and implicated these molecules in the modulation of various physiological processes such as pain, stress, anxiety, appetite, cardiovascular function and inflammation [4][5][6][7] . The physiological effects resulting from perturbation of the production of anandamide and other NAEs in living systems are, however, poorly studied, partly because of a lack of pharmacological tools to modulate their biosynthetic enzymes 8 . NAPE-PLD is generally considered a principal NAE biosynthetic enzyme 9,10 . Biochemical and structural studies have demonstrated that NAPE-PLD is a membrane-associated, constitutively active zinc hydrolase with a metallo-β-lactamase fold 11 . The enzyme generates a broad range of NAEs by hydrolysis of the phosphodiester bond between the phosphoglyceride and the NAE in N-acylphosphatidylethanolamines (NAPEs) 12 . Knockout (KO) studies have shown that the Ca 2+ -dependent conversion of NAPE to NAEs bearing both saturated and polyunsaturated fatty acyl groups are fivefold reduced in brain lysates from mice that genetically lack Napepld 13 . In accordance, reduced levels of saturated and mono-unsaturated NAEs were observed in the brains of NAPE-PLD KO mice [13][14][15] . Anandamide levels were not reduced in the transgenic model reported by Leung et al., which suggested the presence of compensatory mechanisms 13 . Indeed, multiple alternative biosynthetic pathways for anandamide have been discovered since 10 .
The cysteine cathepsins are a group of 11 proteases whose function was originally believed to be the degradation of endocytosed material with a high degree of redundancy. However, it has become clear that these enzymes are also important regulators of both health and disease. Thus, selective tools that can discriminate between members of this highly related class of enzymes will be critical to further delineate the unique biological functions of individual cathepsins. Here we present the design and synthesis of a near-infrared quenched activity-based probe (qABP) that selectively targets cathepsin S which is highly expressed in immune cells. Importantly, this high degree of selectivity is retained both in vitro and in vivo. In combination with a new green-fluorescent pan-reactive cysteine cathepsin qABP we performed dual color labeling studies in bone marrow derived immune cells and identified vesicles containing exclusively cathepsin S activity. This observation demonstrates the value of our complimentary cathepsin probes and provides evidence for the existence of specific localization of cathepsin S activity in dendritic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.