To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here, we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically-active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation by six-fold and product specificity by 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.
Protein/RNA clusters arise frequently in spatially regulated biological processes, from the asymmetric distribution of P granules and PAR proteins in developing embryos to localized receptor oligomers in migratory cells. This co-occurrence suggests that protein clusters might possess intrinsic properties that make them a useful substrate for spatial regulation. Here, we demonstrate that protein droplets show a robust form of spatial memory, maintaining the spatial pattern of an inhibitor of droplet formation long after it has been removed. Despite this persistence, droplets can be highly dynamic, continuously exchanging monomers with the diffuse phase. We investigate the principles of biophysical spatial memory in three contexts: a computational model of phase separation; a novel optogenetic system where light can drive rapid, localized dissociation of liquid-like protein droplets; and membrane-localized signal transduction from clusters of receptor tyrosine kinases. Our results suggest that the persistent polarization underlying many cellular and developmental processes could arise through a simple biophysical process, without any additional biochemical feedback loops.
ABC transporters are polytopic proteins. ATP hydrolysis and substrate transport take place in separate domains, and these activities must be coordinated through a signal interface. We previously characterized a mutation (S558Y) in the yeast multidrug transporter Pdr5 that uncouples ATP hydrolysis and drug transport. To characterize the transmission interface, we used a genetic screen to isolate second-site mutations of S558Y that restore drug transport. We recovered suppressors that restore drug resistance; their locations provide functional evidence for an interface in the cis rather than the trans configuration indicated by structural and crosslinking studies of bacterial and eukaryotic efflux transporters. One mutation, E244G, defines the Q-loop of the deviant portion of NBD1, which is the hallmark of this group of fungal transporters. When moved to an otherwise wild-type background, this mutation and its counterpart in the canonical ATP-binding site Q951G show a similar reduction in drug resistance and in the very high basal-level ATP hydrolysis characteristic of Pdr5. A double E244G, Q951G mutant is considerably more drug sensitive than either of the single mutations. Surprisingly, then, the deviant and canonical Q-loop residues are functionally overlapping and equivalent in a strikingly asymmetric ABC transporter.
Protein/RNA clusters arise frequently in spatially-regulated biological processes, from the asymmetric distribution of P granules and PAR proteins in developing embryos to localized receptor oligomers in migratory cells. This co-occurrence suggests that protein clusters might possess intrinsic properties that make them a useful substrate for spatial regulation. Here, we demonstrate that protein droplets show a robust form of spatial memory, maintaining the spatial pattern of an inhibitor of droplet formation long after it has been removed. Despite this persistence, droplets can be highly dynamic, continuously exchanging monomers with the diffuse phase. We investigate the principles of biophysical spatial memory in three contexts: a computational model of phase separation; a novel optogenetic system where light can drive rapid, localized dissociation of liquid-like protein droplets; and membrane-localized signal transduction from clusters of receptor tyrosine kinases. Our results suggest that the persistent polarization underlying many cellular and developmental processes could arise through a simple biophysical process, without any additional requirement for biochemical positive and negative feedback loops. Highlights1. We introduce PixELLs, an optogenetic system for protein droplet disassembly.2. Modeling and experiments demonstrate long-term memory of local droplet dissociation.3. Droplets 'remember' spatial stimuli in nuclei, the cytosol and on cell membranes.4. FGFR-optoDroplets convert transient local inputs to persistent cytoskeletal responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.