Decision support systems are used as a method of promoting consistent guideline-based diagnosis supporting clinical reasoning at point of care. However, despite the availability of numerous commercial products, the wider acceptance of these systems has been hampered by concerns about diagnostic performance and a perceived lack of transparency in the process of generating clinical recommendations. This resonates with the Learning Health System paradigm that promotes data-driven medicine relying on routine data capture and transformation, which also stresses the need for trust in an evidence-based system. Data provenance is a way of automatically capturing the trace of a research task and its resulting data, thereby facilitating trust and the principles of reproducible research. While computational domains have started to embrace this technology through provenance-enabled execution middlewares, traditionally non-computational disciplines, such as medical research, that do not rely on a single software platform, are still struggling with its adoption. In order to address these issues, we introduce provenance templates - abstract provenance fragments representing meaningful domain actions. Templates can be used to generate a model-driven service interface for domain software tools to routinely capture the provenance of their data and tasks. This paper specifies the requirements for a Decision Support tool based on the Learning Health System, introduces the theoretical model for provenance templates and demonstrates the resulting architecture. Our methods were tested and validated on the provenance infrastructure for a Diagnostic Decision Support System that was developed as part of the EU FP7 TRANSFoRm project.
If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
A key challenge in point-of-care clinical trial recruitment is to autonomously identify eligible patients on presentation. Similarly, the aim of computable phenotyping is to identify those individuals within a population that exhibit a certain condition. This synergy creates an opportunity to leverage phenotypes in identifying eligible patients for clinical trials. To investigate the feasibility of this approach, we use the Transform clinical trial platform and replace its archetype-based eligibility criteria mechanism with a computable phenotype execution microservice. Utilising a phenotype for acute otitis media with discharge (AOMd) created with the Phenoflow platform, we compare the performance of Transform with and without the use of phenotype-based eligibility criteria when recruiting AOMd patients. The parameters of the trial simulated are based on those of the REST clinical trial, conducted in UK primary care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.