IR is prevalent in PD and it correlates with BMI. A correlation between IR with cognitive and QoL measures cannot be determined on the basis of this sample.
Purpose
To develop a new technique that enables simultaneous quantification of whole‐brain T1, T2, T2∗, as well as susceptibility and synthesis of six contrast‐weighted images in a single 9.1‐minute scan.
Methods
The technique uses hybrid T2‐prepared inversion‐recovery pulse modules and multi‐echo gradient‐echo readouts to collect k‐space data with various T1, T2, and T2∗ weightings. The underlying image is represented as a six‐dimensional low‐rank tensor consisting of three spatial dimensions and three temporal dimensions corresponding to T1 recovery, T2 decay, and multi‐echo behaviors, respectively. Multiparametric maps were fitted from reconstructed image series. The proposed method was validated on phantoms and healthy volunteers, by comparing quantitative measurements against corresponding reference methods. The feasibility of generating six contrast‐weighted images was also examined.
Results
High quality, co‐registered T1, T2, and T2∗ susceptibility maps were generated that closely resembled the reference maps. Phantom measurements showed substantial consistency (R2 > 0.98) with the reference measurements. Despite the significant differences of T1 (p < .001), T2 (p = .002), and T2∗ (p = 0.008) between our method and the references for in vivo studies, excellent agreement was achieved with all intraclass correlation coefficients greater than 0.75. No significant difference was found for susceptibility (p = .900). The framework is also capable of synthesizing six contrast‐weighted images.
Conclusion
The MR Multitasking–based 3D brain mapping of T1, T2, T2∗, and susceptibility agrees well with the reference and is a promising technique for multicontrast and quantitative imaging.
Urinary tract infection (UTI) is a common precipitant of acute neurological deterioration in patients with Parkinson’s disease (PD) and a leading cause of delirium, functional decline, falls, and hospitalization. Various clinical features of PD including autonomic dysfunction and altered urodynamics, frailty and cognitive impairment, and the need for bladder catheterization contribute to an increased risk of UTI. Sepsis due to UTI is a feared consequence of untreated or undertreated UTI and a leading cause of death in PD. Emerging research suggests that immune-mediated brain injury may underlie the pathogenesis of UTI-induced deterioration of PD symptoms. Existing strategies to prevent UTI in patients with PD include use of topical estrogen, prophylactic supplements, antibiotic bladder irrigation, clean catheterization techniques, and prophylactic oral antibiotics, while bacterial interference and vaccines/immunostimulants directed against common UTI pathogens are potentially emerging strategies that are currently under investigation. Future research is needed to mitigate the deleterious effects of UTI in PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.