The objective of this work is to recognize object categories (such as animals and vehicles) in paintings, whilst learning these categories from natural images. This is a challenging problem given the substantial differences between paintings and natural images, and variations in depiction of objects in paintings [5] -see figure 1. Contributions. (i) We show that object category classifiers learnt using Fisher Vectors [4] extracted from natural images can retrieve paintings containing that category with some success; (ii) we then introduce a method of re-ranking these retrieved paintings based on spatial consistency of Mid-Level Discriminative Patch (MLDP) correspondences with the original training images and show that the precision of the top ranked paintings (i.e. the ones that would appear on the first webpage in an image search) can be significantly improved using this method.
The objective of this work is to find objects in paintings by learning object-category classifiers from available sources of natural images. Finding such objects is of much benefit to the art history community as well as being a challenging problem in large-scale retrieval and domain adaptation.We make the following contributions: (i) we show that object classifiers, learnt using Convolutional Neural Networks (CNNs) features computed from various natural image sources, can retrieve paintings containing these objects with great success; (ii) we develop a system that can learn object classifiers on-the-fly from Google images and use these to find a large variety of previously unfound objects in a dataset of 210,000 paintings; (iii) we combine object classifiers and detectors to align objects to allow for direct comparison; for example to illustrate how they have varied over time.
Abstract. The objective of this work is to recognize object categories in paintings, such as cars, cows and cathedrals. We achieve this by training classifiers from natural images of the objects. We make the following contributions: (i) we measure the extent of the domain shift problem for image-level classifiers trained on natural images vs paintings, for a variety of CNN architectures; (ii) we demonstrate that classificationby-detection (i.e. learning classifiers for regions rather than the entire image) recognizes (and locates) a wide range of small objects in paintings that are not picked up by image-level classifiers, and combining these two methods improves performance; and (iii) we develop a system that learns a region-level classifier on-the-fly for an object category of a user's choosing, which is then applied to over 60 million object regions across 210,000 paintings to retrieve localised instances of that category.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.