The International Committee on Taxonomy of Viruses (ICTV) is charged with the task of developing, refining, and maintaining a universal virus taxonomy. This task encompasses the classification of virus species and higher-level taxa according to the genetic and biological properties of their members; naming virus taxa; maintaining a database detailing the currently approved taxonomy; and providing the database, supporting proposals, and other virus-related information from an open-access, public web site. The ICTV web site (http://ictv.global) provides access to the current taxonomy database in online and downloadable formats, and maintains a complete history of virus taxa back to the first release in 1971. The ICTV has also published the ICTV Report on Virus Taxonomy starting in 1971. This Report provides a comprehensive description of all virus taxa covering virus structure, genome structure, biology and phylogenetics. The ninth ICTV report, published in 2012, is available as an open-access online publication from the ICTV web site. The current, 10th report (http://ictv.global/report/), is being published online, and is replacing the previous hard-copy edition with a completely open access, continuously updated publication. No other database or resource exists that provides such a comprehensive, fully annotated compendium of information on virus taxa and taxonomy.
Streptococcus pneumoniae is among the most significant causes of bacterial disease in humans. Here we report the 2,038,615-bp genomic sequence of the gram-positive bacterium S. pneumoniae R6. Because the R6 strain is avirulent and, more importantly, because it is readily transformed with DNA from homologous species and many heterologous species, it is the principal platform for investigation of the biology of this important pathogen. It is also used as a primary vehicle for genomics-based development of antibiotics for gram-positive bacteria. In our analysis of the genome, we identified a large number of new uncharacterized genes predicted to encode proteins that either reside on the surface of the cell or are secreted. Among those proteins there may be new targets for vaccine and antibiotic development.
Studies indicate that West African and Congo basin isolates of monkeypox virus (MPXV) are genetically distinct. Here, we show Congo basin MPXV-ZAI-V79 is more virulent for cynomolgus monkeys as compared to presumed West African MPXV-COP-58. This finding may explain the lack of case-fatalities in the U.S. 2003 monkeypox outbreak, which was caused by a West African virus. Virulence differences between West African and Congo basin MPXV are further supported by epidemiological analyses that observed a similar prevalence of antibodies in non-vaccinated humans in both regions, while >90% of reported cases occurred in the Congo basin, and no fatal cases were observed outside of this region. To determine the basis for this difference in virulence, we sequenced the genomes of one human West African isolate, and two presumed West African isolates and compared the sequences to Congo basin MPXV-ZAI-96-I-16. The analysis identified D10L, D14L, B10R, B14R, and B19R as possible virulence genes, with D14L (ortholog of vaccinia complement protein) as a leading candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.