Previous studies have used analysis of Ca(2+) sparks extensively to investigate both normal and pathological Ca(2+) regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca(2+) sparks in line-scan images has greatly simplified data analysis. A disadvantage of line-scan imaging is that data are collected from a single row of pixels, representing only a small fraction of the cell, and in many instances x-y confocal imaging is preferable. However, the limited availability of software for Ca(2+) spark analysis in two-dimensional x-y image stacks presents an obstacle to its wider application. This study describes the development and characterization of software to enable automatic detection and analysis of Ca(2+) sparks within x-y image stacks, implemented as a plugin within the open-source image analysis platform ImageJ. The program includes methods to enable precise identification of cells within confocal fluorescence images, compensation for changes in background fluorescence, and options that allow exclusion of events based on spatial characteristics.
Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET’s broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community.
Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET's broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community.
Staphylococcus aureus is an important human pathogen that causes a wide range of infections. Neutrophils are an essential component of our innate immune system and understanding S. aureus-neutrophil interactions on a sub-cellular level is crucial to developing new therapeutic strategies to promote immunity during S. aureus infections. To this end we have developed a multi-modal imaging platform capable of following host-pathogen processes in biological systems, this is achieved by switching imaging modalities between a low photo-toxicity and low resolution imaging modality through an increasing illumination intensity to achieve live super-resolution imaging. This novel imaging platform was applied to the study of human neutrophils infected by S. aureus. We show that we can image different infection stages of S. aureus in live neutrophils with super resolution microscopy. We see evidence of binary fission occurring in intracellular S. aureus within a neutrophil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.