Locally grown feed ingredients of high energy and protein content, such as peanuts, maybe economically feasible alternatives to corn and soybean meal in broiler diets. Even though normal-oleic peanuts have been demonstrated to be a viable feed ingredient for poultry, few studies to date have examined the use of high-oleic peanuts (HO PN) as an alternative feed ingredient for broiler chickens. Thus, we aimed to determine the effect of feeding HO PN on broiler performance, nutrient digestibility and intestinal morphology. Three isocaloric, isonitrogenous experimental diets were formulated with 1) dietary inclusion of ~10% coarse-ground whole HO PN; 2) a corn-soybean meal control diet with 5.5% added poultry fat; and 3) a control diet supplemented with 5.5% oleic fatty acid oil. Three-hundred Ross 708 broilers were randomly placed in 10 replicate pens/treatment with of 10 chicks/pen and raised until 42 d. Body weights (BW) and feed intake (FI) were determined weekly, and feed conversion ratio (FCR) was calculated. Jejunum samples were collected at 42 d for histomorphometric analysis. Analysis of variance was performed on all variables using a general linear mixed model in JMP Pro14 (2013). Broilers in the HO PN group had lower (P < 0.05) body weights and higher FCR, than other treatment groups at week 2 and week 6. There were no significant differences in jejunum villi surface area between the treatment groups. However, broilers fed the HO PN diet had greater (P = 0.019) apparent metabolizable energy relative to the other treatment groups, suggesting improved nutrient uptake of dietary fats and/or carbohydrates in the HO PN treatment group. However, additional studies are warranted to further define the nutritional value of HO PN as an alternative poultry feed ingredient.
We aimed to determine the effects of feeding a high-oleic peanut (HOPN) diet to egg-producing laying hens on egg quality, digestibility, and feed conversion. Three isonitrogenous and isocaloric dietary treatments were formulated with 1) Control diet (CON) - a corn-soybean meal conventional diet with 7.8 % added poultry fat 2) HOPN diet - dietary inclusion of ~20% coarse-ground whole HOPN and 3) Oleic Acid (CON-OA) diet -a control diet supplemented with 2.6 % oleic fatty acid oil. Ninety-nine 57-wk-old brown Leghorn laying hens were randomly assigned to 33 animals per treatment. Animals were housed individually for 8 weeks. Body and feed weights were recorded weekly and feed conversation ratio was calculated. Bi-weekly, shell eggs were analyzed for quality (yolk color, albumen height), and haugh unit). Jejunum samples were collected at week 8 for histomorphometric analysis. Analysis of variance was performed on all variables using a general linear mixed model. Laying hens fed the CON-OA diet produced greater number of eggs relative to those fed the HOPN and control diets (P < 0.05). The roche yolk color value was higher (P < 0.001) in eggs from hens fed the HOPN diet. There were no differences in laying hen performance, eggshell color, eggshell strength, eggshell elasticity and egg albumen height, or egg Haugh unit, ileal fat digestibility or villi surface among treatment groups. However, the apparent metabolizable energy (P < 0.01) and ileal protein digestibility (P = 0.02) was greater in laying hens fed the HOPN diet relative to the CON diet. This study suggests that whole unblanched high-oleic peanuts may be an acceptable alternative feed ingredient for laying hens.
We investigated the dietary effects of high-oleic peanuts (HOPN) or oleic fatty acids (OA) on older production hen performance, egg mass and quality, and lipid composition. A total of 99 laying hens were divided between three treatments and fed ad libitum for 8 weeks: (1) Conventional diet; (2) HOPN diet; (3) OA diet. Body weight (BW) was measured at weeks 1 and 8, and feed, egg weights (EW), and egg quality parameters were collected. Data was analyzed by analysis of variance at p < 0.05 significance level. There were no treatment differences in 8 week BW, feed conversion ratio, or average weekly egg quality parameters. The 8 week average EW of eggs from the HOPN group had reduced EW relative to the other treatment groups (p = 0.0004). The 8-week average yolk color score (p < 0.0001) was greater in eggs from the HOPN group relative to the other treatments. Overall, the β-carotene (p < 0.006) and OA content (p < 0.0001) was greater in eggs from the HOPN group, with reduced saturated fats in eggs from the HOPN group relative to the other treatments. These results suggest that HOPN and/or OA may be a useful layer feed ingredient to enrich eggs, while significantly reducing egg size in older production hens.
Previous studies have demonstrated that allergenic feed proteins from peanuts in the diets of layer hens are not detected in the eggs produced. Hence, in this study, we aimed to determine if soy and/or peanut proteins in poultry feed rations of broiler chickens or layer hens would be transferred or detectable in the meat or eggs produced. To meet this objective, 99 layer hens and 300 broiler chickens were equally divided into treatment groups and fed one of three experimental diets: control soybean meal and corn diet, whole unblanched high-oleic peanut and corn diet (HO PN), or a control diet spiked supplemented with oleic acid (OA) oil. At termination, broiler chickens were processed, and chicken breast samples of the left pectoralis muscle were collected, and eggs were collected from layers. Total protein extracts from pooled egg samples and chicken breast samples were subjected to enzyme-linked immunosorbent assay (ELISA) methods and immunoblotting analysis with rabbit antipeanut agglutinin antibodies and rabbit antisoy antibodies for the detection of peanut and soy proteins. Peanut and soy proteins were undetected in all pooled egg samples and individual chicken breast meat samples using immunoblotting techniques with rabbit antipeanut agglutinin and rabbit antisoy antibodies. Moreover, quantitative ELISA allergen detection methods determined all pooled egg samples and individual meat samples as “not containing” peanut or soy allergens. Therefore, this study helps to evaluate the risk associated with the potential transfer of allergenic proteins from animal feed to the products produced for human consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.