Abstract:We present a comprehensive database of near-shore wind observations that were carried out during the experimental campaign of the RUNE project. RUNE aims at reducing the uncertainty of the near-shore wind resource estimates from model outputs by using lidar, ocean, and satellite observations. Here, we concentrate on describing the lidar measurements. The campaign was conducted from November 2015 to February 2016 on the west coast of Denmark and comprises measurements from eight lidars, an ocean buoy and three types of satellites. The wind speed was estimated based on measurements from a scanning lidar performing PPIs, two scanning lidars performing dual synchronized scans, and five vertical profiling lidars, of which one was operating offshore on a floating platform. The availability of measurements is highest for the profiling lidars, followed by the lidar performing PPIs, those performing the dual setup, and the lidar buoy. Analysis of the lidar measurements reveals good agreement between the estimated 10-min wind speeds, although the instruments used different scanning strategies and measured different volumes in the atmosphere. The campaign is characterized by strong westerlies with occasional storms.
The demand for minute-scale forecasts of wind power is continuously increasing with the growing penetration of renewable energy into the power grid, as grid operators need to ensure grid stability in the presence of variable power generation. For this reason, IEA Wind Tasks 32 and 36 together organized a workshop on “Very Short-Term Forecasting of Wind Power” in 2018 to discuss different approaches for the implementation of minute-scale forecasts into the power industry. IEA Wind is an international platform for the research community and industry. Task 32 tries to identify and mitigate barriers to the use of lidars in wind energy applications, while IEA Wind Task 36 focuses on improving the value of wind energy forecasts to the wind energy industry. The workshop identified three applications that need minute-scale forecasts: (1) wind turbine and wind farm control, (2) power grid balancing, (3) energy trading and ancillary services. The forecasting horizons for these applications range from around 1 s for turbine control to 60 min for energy market and grid control applications. The methods that can be applied to generate minute-scale forecasts rely on upstream data from remote sensing devices such as scanning lidars or radars, or are based on point measurements from met masts, turbines or profiling remote sensing devices. Upstream data needs to be propagated with advection models and point measurements can either be used in statistical time series models or assimilated into physical models. All methods have advantages but also shortcomings. The workshop’s main conclusions were that there is a need for further investigations into the minute-scale forecasting methods for different use cases, and a cross-disciplinary exchange of different method experts should be established. Additionally, more efforts should be directed towards enhancing quality and reliability of the input measurement data.
Abstract. Numerical simulation tools such as large eddy simulations (LESs) have been extensively used in recent years to simulate and analyze turbine–wake interactions within large wind farms. However, to ensure the reliability of the performance and accuracy of such numerical solvers, validation against field measurements is essential. To this end, a measurement campaign is carried out at the Lillgrund offshore wind farm to gather data for the validation of an in-house LES solver. Flow field data are collected from the farm using three long-range WindScanners, along with turbine performance and load measurements from individual turbines. Turbulent inflow conditions are reconstructed from an existing precursor database using a scaling-and-shifting approach in an optimization framework, proposed so that the generated inflow statistics match the measurements. Thus, five different simulation cases are setup, corresponding to five different inflow conditions at the Lillgrund wind farm. Operation of the 48 Siemens 2.3 MW turbines from the Lillgrund wind farm is parameterized in the flow domain using an aeroelastic actuator sector model (AASM). Time-series turbine performance metrics from the simulated cases are compared against field measurements to evaluate the accuracy of the optimization framework, turbine model, and flow solver. In general, results from the numerical solver exhibited a good comparison in terms of the trends in power production, turbine loading, and wake recovery. For four out of the five simulated cases, the total wind farm power error was found to be below 5 %. However, when comparing individual turbine power production, statistical significant errors were observed for 16 % to 84 % of the turbines across the simulated cases, with larger errors being associated with wind directions resulting in configurations with aligned turbines. While the compared flapwise loads in general show a reasonable agreement, errors greater than 100 % were also present in some cases. Larger errors in the wake recovery in the far wake region behind the lidar installed turbines were also observed. An analysis of the observed errors reveals the need for an improved controller implementation, improvement in representing meso-scale effects, and possibly a finer simulation grid for capturing the smaller scales of wake turbulence.
Aerodynamic wake interactions between turbines located in wind power plants cause both a loss in power production and an increase in fatigue loading of the wind farm turbines. Yaw induced active wake deflection is one possible wind farm control strategy, which can be applied to mitigate wake effects on nearby downstream located wind turbines. In the present study three flow models of different fidelities are applied to mimic a full-scale study of wake deflection recorded by an advanced synchronised setup of two long-range pulsed scanning lidars. The investigated case studies encompass a base case with (approximately) zero yaw setting supplemented by two non-zero yaw cases of 17.5° and -14.5°, respectively. The model results are compared mutually as well as with the result of the full-scale measurement campaign.
Abstract. Wind turbines and wind farms lack information about upstream wind conditions which are ultimately converted into electricity. Remote sensing instruments such as compact pulsed scanning wind lidars can observe the incoming wind field at large distances (up to 10 km) ahead of a wind farm and provide spatial and temporal information about the inflow on operational timeframes not feasible with numerical weather models. On very-short horizons (below 1-hour lead times), the persistence method is commonly used, which fails to capture the unsteady state of the atmosphere and can introduce costly errors into the power system by means of imbalances. A method of measuring, processing, and predicting site-specific 1–60 minute ahead wind speeds is proposed using machine learning methods applied to lidar observations from a field experiment in western Denmark. A direct multi-step forecast strategy is implemented using Stochastic Gradient Descent Regression (SGDR) with model weights updated following each repeating lidar scan. Overall, the proposed method demonstrates improved skill over persistence, with a reduction of root-mean-squared (RMS) wind speed errors ranging from 21 % (1-min ahead), to 10.9 % (5-mins ahead), 9.2 % (10-mins ahead), 7.1 % (30-mins ahead), and 6.2 % (60-mins ahead) while maintaining normally distributed errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.